IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i17p3363-d262930.html
   My bibliography  Save this article

Cost–Benefit Analysis of Energy Storage in Distribution Networks

Author

Listed:
  • Yu Ji

    (China Electric Power Research Institute, Beijing 100192, China)

  • Xiaogang Hou

    (China Electric Power Research Institute, Beijing 100192, China)

  • Lingfeng Kou

    (China Electric Power Research Institute, Beijing 100192, China)

  • Ming Wu

    (China Electric Power Research Institute, Beijing 100192, China)

  • Ying Zhang

    (China Electric Power Research Institute, Beijing 100192, China)

  • Xiong Xiong

    (China Electric Power Research Institute, Beijing 100192, China)

  • Baodi Ding

    (China Electric Power Research Institute, Beijing 100192, China)

  • Ping Xue

    (College of Electrical Engineering, Sichuan University, Chengdu 610065, China)

  • Junlong Li

    (College of Electrical Engineering, Sichuan University, Chengdu 610065, China)

  • Yue Xiang

    (College of Electrical Engineering, Sichuan University, Chengdu 610065, China)

Abstract

Due to the challenges posed to power systems because of the variability and uncertainty in clean energy, the integration of energy storage devices (ESD) has provided a rigorous approach to improve network stability in recent years. Moreover, with the rapid development of the electricity market, an ESD operation strategy, which can maximize the benefits of ESD owners as well as the contribution to the electricity network stability, plays an important role in the marketization of ESDs. Although the benefits for ESD owners are discussed in many studies, the economic impact of ESD operation on distribution networks has not been commendably taken into account. Therefore, a cost–benefit analysis method of ESD which quantifies the economic impact of ESD operation on distribution networks is proposed in this paper. Considering the time-of-use (TOU) price and load demand, the arbitrage of ESD is realized through a strategy with low price charging and high price discharging. Then, the auxiliary service of ESD is realized by its capability of peak shaving and valley filling. In this paper, the long-run incremental cost (LRIC) method is adopted to calculate the network price based on the congestion cost. Based on the dynamic cost–benefit analysis method, the cost–benefit marginal analysis model in the ESD life cycle is proposed through the calculation of the present value of benefit. Subsequently, the optimal ESD capacity and charge/discharge rate is obtained to get the shortest payback period by analyzing different operation parameters. Finally, a case study is undertaken, where the ESD operation model mentioned above is simulated on a two-bus system and a 33-bus system, and the ESD cost–benefit analysis and the analysis of corresponding influence factors are carried out adequately.

Suggested Citation

  • Yu Ji & Xiaogang Hou & Lingfeng Kou & Ming Wu & Ying Zhang & Xiong Xiong & Baodi Ding & Ping Xue & Junlong Li & Yue Xiang, 2019. "Cost–Benefit Analysis of Energy Storage in Distribution Networks," Energies, MDPI, vol. 12(17), pages 1-23, September.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:17:p:3363-:d:262930
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/17/3363/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/17/3363/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dickinson, Ryan M. & Cruickshank, Cynthia A. & Harrison, Stephen J., 2013. "Charge and discharge strategies for a multi-tank thermal energy storage," Applied Energy, Elsevier, vol. 109(C), pages 366-373.
    2. Shahmohammadi, Ali & Sioshansi, Ramteen & Conejo, Antonio J. & Afsharnia, Saeed, 2018. "Market equilibria and interactions between strategic generation, wind, and storage," Applied Energy, Elsevier, vol. 220(C), pages 876-892.
    3. Zhang, Caiping & Jiang, Jiuchun & Gao, Yang & Zhang, Weige & Liu, Qiujiang & Hu, Xiaosong, 2017. "Charging optimization in lithium-ion batteries based on temperature rise and charge time," Applied Energy, Elsevier, vol. 194(C), pages 569-577.
    4. Shcherbakova, Anastasia & Kleit, Andrew & Cho, Joohyun, 2014. "The value of energy storage in South Korea’s electricity market: A Hotelling approach," Applied Energy, Elsevier, vol. 125(C), pages 93-102.
    5. Sani Hassan, Abubakar & Cipcigan, Liana & Jenkins, Nick, 2017. "Optimal battery storage operation for PV systems with tariff incentives," Applied Energy, Elsevier, vol. 203(C), pages 422-441.
    6. Yan, Xiaohe & Gu, Chenghong & Li, Furong & Xiang, Yue, 2018. "Network pricing for customer-operated energy storage in distribution networks," Applied Energy, Elsevier, vol. 212(C), pages 283-292.
    7. Zafirakis, Dimitrios & Chalvatzis, Konstantinos J. & Baiocchi, Giovanni & Daskalakis, Georgios, 2016. "The value of arbitrage for energy storage: Evidence from European electricity markets," Applied Energy, Elsevier, vol. 184(C), pages 971-986.
    8. Han, Xiaojuan & Zhang, Hua & Yu, Xiaoling & Wang, Lina, 2016. "Economic evaluation of grid-connected micro-grid system with photovoltaic and energy storage under different investment and financing models," Applied Energy, Elsevier, vol. 184(C), pages 103-118.
    9. Zafirakis, Dimitrios & Chalvatzis, Konstantinos J. & Baiocchi, Giovanni & Daskalakis, George, 2013. "Modeling of financial incentives for investments in energy storage systems that promote the large-scale integration of wind energy," Applied Energy, Elsevier, vol. 105(C), pages 138-154.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yan, Xiaohe & Gu, Chenghong & Li, Furong & Xiang, Yue, 2018. "Network pricing for customer-operated energy storage in distribution networks," Applied Energy, Elsevier, vol. 212(C), pages 283-292.
    2. Ma, Tao & Zhang, Yijie & Gu, Wenbo & Xiao, Gang & Yang, Hongxing & Wang, Shuxiao, 2022. "Strategy comparison and techno-economic evaluation of a grid-connected photovoltaic-battery system," Renewable Energy, Elsevier, vol. 197(C), pages 1049-1060.
    3. Antweiler, Werner, 2021. "Microeconomic models of electricity storage: Price Forecasting, arbitrage limits, curtailment insurance, and transmission line utilization," Energy Economics, Elsevier, vol. 101(C).
    4. Chalvatzis, Konstantinos J. & Ioannidis, Alexis, 2017. "Energy supply security in the EU: Benchmarking diversity and dependence of primary energy," Applied Energy, Elsevier, vol. 207(C), pages 465-476.
    5. Nguyen, Su & Peng, Wei & Sokolowski, Peter & Alahakoon, Damminda & Yu, Xinghuo, 2018. "Optimizing rooftop photovoltaic distributed generation with battery storage for peer-to-peer energy trading," Applied Energy, Elsevier, vol. 228(C), pages 2567-2580.
    6. Li, Longxi & Cao, Xilin, 2022. "Comprehensive effectiveness assessment of energy storage incentive mechanisms for PV-ESS projects based on compound real options," Energy, Elsevier, vol. 239(PA).
    7. Zafirakis, Dimitrios & Chalvatzis, Konstantinos J. & Baiocchi, Giovanni & Daskalakis, Georgios, 2016. "The value of arbitrage for energy storage: Evidence from European electricity markets," Applied Energy, Elsevier, vol. 184(C), pages 971-986.
    8. Hongli Liu & Luoqi Wang & Ji Li & Lei Shao & Delong Zhang, 2023. "Research on Smart Power Sales Strategy Considering Load Forecasting and Optimal Allocation of Energy Storage System in China," Energies, MDPI, vol. 16(8), pages 1-18, April.
    9. Vu Ba Hau & Munir Husein & Il-Yop Chung & Dong-Jun Won & William Torre & Truong Nguyen, 2018. "Analyzing the Impact of Renewable Energy Incentives and Parameter Uncertainties on Financial Feasibility of a Campus Microgrid," Energies, MDPI, vol. 11(9), pages 1-24, September.
    10. Chen, Yang & Odukomaiya, Adewale & Kassaee, Saiid & O’Connor, Patrick & Momen, Ayyoub M. & Liu, Xiaobing & Smith, Brennan T., 2019. "Preliminary analysis of market potential for a hydropneumatic ground-level integrated diverse energy storage system," Applied Energy, Elsevier, vol. 242(C), pages 1237-1247.
    11. Go, Roderick S. & Munoz, Francisco D. & Watson, Jean-Paul, 2016. "Assessing the economic value of co-optimized grid-scale energy storage investments in supporting high renewable portfolio standards," Applied Energy, Elsevier, vol. 183(C), pages 902-913.
    12. Cho, Joohyun & Kleit, Andrew N., 2015. "Energy storage systems in energy and ancillary markets: A backwards induction approach," Applied Energy, Elsevier, vol. 147(C), pages 176-183.
    13. Sidhu, Arjan S. & Pollitt, Michael G. & Anaya, Karim L., 2018. "A social cost benefit analysis of grid-scale electrical energy storage projects: A case study," Applied Energy, Elsevier, vol. 212(C), pages 881-894.
    14. Zhang, Jian & Cho, Heejin & Luck, Rogelio & Mago, Pedro J., 2018. "Integrated photovoltaic and battery energy storage (PV-BES) systems: An analysis of existing financial incentive policies in the US," Applied Energy, Elsevier, vol. 212(C), pages 895-908.
    15. Huang, Qisheng & Xu, Yunjian & Courcoubetis, Costas, 2020. "Stackelberg competition between merchant and regulated storage investment in wholesale electricity markets," Applied Energy, Elsevier, vol. 264(C).
    16. Calise, Francesco & Cipollina, Andrea & Dentice d’Accadia, Massimo & Piacentino, Antonio, 2014. "A novel renewable polygeneration system for a small Mediterranean volcanic island for the combined production of energy and water: Dynamic simulation and economic assessment," Applied Energy, Elsevier, vol. 135(C), pages 675-693.
    17. Waterson, Michael, 2017. "The characteristics of electricity storage, renewables and markets," Energy Policy, Elsevier, vol. 104(C), pages 466-473.
    18. Osorio, J.D. & Rivera-Alvarez, A. & Swain, M. & Ordonez, J.C., 2015. "Exergy analysis of discharging multi-tank thermal energy storage systems with constant heat extraction," Applied Energy, Elsevier, vol. 154(C), pages 333-343.
    19. Hartmann, Bálint & Divényi, Dániel & Vokony, István, 2018. "Evaluation of business possibilities of energy storage at commercial and industrial consumers – A case study," Applied Energy, Elsevier, vol. 222(C), pages 59-66.
    20. Pejman Bahramian, 2021. "Integration of wind power into an electricity system using pumped-storage: Economic challenges and stakeholder impacts," Working Paper 1480, Economics Department, Queen's University.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:17:p:3363-:d:262930. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.