IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v194y2017icp569-577.html
   My bibliography  Save this article

Charging optimization in lithium-ion batteries based on temperature rise and charge time

Author

Listed:
  • Zhang, Caiping
  • Jiang, Jiuchun
  • Gao, Yang
  • Zhang, Weige
  • Liu, Qiujiang
  • Hu, Xiaosong

Abstract

Lithium-ion battery fast charging issues have become a main bottleneck of large-scale deployment of electric vehicles. This paper develops a polarization based charging time and temperature rise optimization strategy for lithium-ion batteries. An enhanced thermal behavior model is introduced to improve the solution accuracy at high charging current, in which the relationship between polarization voltage and charge current is addressed. Genetic algorithm (GA) is employed to search for the optimal charging current trajectories. The effects of weighting coefficients of charging time and temperature rise on battery charging performance are discussed. The charging time of the optimized charging protocol is reduced by 50%, and the associated temperature rise is almost identical, compared to 1/3C constant current-constant voltage (CC-CV) charging. Aging experiments demonstrate that the proposed charging method has a similar capacity retention ratio to that of 0.5CC-CV charging after 700 cycles, thereby accomplishing a good balance between charging speed and lifetime.

Suggested Citation

  • Zhang, Caiping & Jiang, Jiuchun & Gao, Yang & Zhang, Weige & Liu, Qiujiang & Hu, Xiaosong, 2017. "Charging optimization in lithium-ion batteries based on temperature rise and charge time," Applied Energy, Elsevier, vol. 194(C), pages 569-577.
  • Handle: RePEc:eee:appene:v:194:y:2017:i:c:p:569-577
    DOI: 10.1016/j.apenergy.2016.10.059
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261916315033
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2016.10.059?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jingyu Yan & Guoqing Xu & Huihuan Qian & Yangsheng Xu & Zhibin Song, 2011. "Model Predictive Control-Based Fast Charging for Vehicular Batteries," Energies, MDPI, vol. 4(8), pages 1-19, August.
    2. Xiong, Rui & Sun, Fengchun & Chen, Zheng & He, Hongwen, 2014. "A data-driven multi-scale extended Kalman filtering based parameter and state estimation approach of lithium-ion olymer battery in electric vehicles," Applied Energy, Elsevier, vol. 113(C), pages 463-476.
    3. Shuo Zhang & Chengning Zhang & Rui Xiong & Wei Zhou, 2014. "Study on the Optimal Charging Strategy for Lithium-Ion Batteries Used in Electric Vehicles," Energies, MDPI, vol. 7(10), pages 1-15, October.
    4. Sun, Fengchun & Xiong, Rui & He, Hongwen, 2016. "A systematic state-of-charge estimation framework for multi-cell battery pack in electric vehicles using bias correction technique," Applied Energy, Elsevier, vol. 162(C), pages 1399-1409.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ma, Zeyu & Yang, Ruixin & Wang, Zhenpo, 2019. "A novel data-model fusion state-of-health estimation approach for lithium-ion batteries," Applied Energy, Elsevier, vol. 237(C), pages 836-847.
    2. He, Hongwen & Xiong, Rui & Peng, Jiankun, 2016. "Real-time estimation of battery state-of-charge with unscented Kalman filter and RTOS μCOS-II platform," Applied Energy, Elsevier, vol. 162(C), pages 1410-1418.
    3. Cheng-Shan Wang & Wei Li & Zhun Meng & Yi-Feng Wang & Jie-Gui Zhou, 2015. "Three-Phase High-Power and Zero-Current-Switching OBC for Plug-In Electric Vehicles," Energies, MDPI, vol. 8(7), pages 1-33, June.
    4. Wei, Zhongbao & Zhao, Jiyun & Ji, Dongxu & Tseng, King Jet, 2017. "A multi-timescale estimator for battery state of charge and capacity dual estimation based on an online identified model," Applied Energy, Elsevier, vol. 204(C), pages 1264-1274.
    5. Zheng Chen & Xiaoyu Li & Jiangwei Shen & Wensheng Yan & Renxin Xiao, 2016. "A Novel State of Charge Estimation Algorithm for Lithium-Ion Battery Packs of Electric Vehicles," Energies, MDPI, vol. 9(9), pages 1-15, September.
    6. Tang, Xiaopeng & Liu, Boyang & Lv, Zhou & Gao, Furong, 2017. "Observer based battery SOC estimation: Using multi-gain-switching approach," Applied Energy, Elsevier, vol. 204(C), pages 1275-1283.
    7. Lin, Cheng & Gong, Xinle & Xiong, Rui & Cheng, Xingqun, 2017. "A novel H∞ and EKF joint estimation method for determining the center of gravity position of electric vehicles," Applied Energy, Elsevier, vol. 194(C), pages 609-616.
    8. Yang, Ruixin & Xiong, Rui & He, Hongwen & Mu, Hao & Wang, Chun, 2017. "A novel method on estimating the degradation and state of charge of lithium-ion batteries used for electrical vehicles," Applied Energy, Elsevier, vol. 207(C), pages 336-345.
    9. Li, Junqiu & Wang, Yihe & Chen, Jianwen & Zhang, Xiaopeng, 2017. "Study on energy management strategy and dynamic modeling for auxiliary power units in range-extended electric vehicles," Applied Energy, Elsevier, vol. 194(C), pages 363-375.
    10. Xiaogang Wu & Wenwen Shi & Jiuyu Du, 2017. "Multi-Objective Optimal Charging Method for Lithium-Ion Batteries," Energies, MDPI, vol. 10(9), pages 1-18, August.
    11. Xiaogang Wu & Tianze Wang, 2017. "Optimization of Battery Capacity Decay for Semi-Active Hybrid Energy Storage System Equipped on Electric City Bus," Energies, MDPI, vol. 10(6), pages 1-20, June.
    12. Ye, Min & Guo, Hui & Xiong, Rui & Yu, Quanqing, 2018. "A double-scale and adaptive particle filter-based online parameter and state of charge estimation method for lithium-ion batteries," Energy, Elsevier, vol. 144(C), pages 789-799.
    13. Lin, Cheng & Yu, Quanqing & Xiong, Rui & Wang, Le Yi, 2017. "A study on the impact of open circuit voltage tests on state of charge estimation for lithium-ion batteries," Applied Energy, Elsevier, vol. 205(C), pages 892-902.
    14. Dafen Chen & Jiuchun Jiang & Xue Li & Zhanguo Wang & Weige Zhang, 2016. "Modeling of a Pouch Lithium Ion Battery Using a Distributed Parameter Equivalent Circuit for Internal Non-Uniformity Analysis," Energies, MDPI, vol. 9(11), pages 1-18, October.
    15. Xiaofeng Ding & Jiawei Cheng & Feida Chen, 2017. "Impact of Silicon Carbide Devices on the Powertrain Systems in Electric Vehicles," Energies, MDPI, vol. 10(4), pages 1-17, April.
    16. Wang, Yujie & Tian, Jiaqiang & Sun, Zhendong & Wang, Li & Xu, Ruilong & Li, Mince & Chen, Zonghai, 2020. "A comprehensive review of battery modeling and state estimation approaches for advanced battery management systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    17. Zhu, Rui & Duan, Bin & Zhang, Chenghui & Gong, Sizhao, 2019. "Accurate lithium-ion battery modeling with inverse repeat binary sequence for electric vehicle applications," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    18. Xiaogang Wu & Zhe Chen & Zhiyang Wang, 2017. "Analysis of Low Temperature Preheating Effect Based on Battery Temperature-Rise Model," Energies, MDPI, vol. 10(8), pages 1-15, August.
    19. Mu, Hao & Xiong, Rui & Zheng, Hongfei & Chang, Yuhua & Chen, Zeyu, 2017. "A novel fractional order model based state-of-charge estimation method for lithium-ion battery," Applied Energy, Elsevier, vol. 207(C), pages 384-393.
    20. Lin, Cheng & Mu, Hao & Xiong, Rui & Cao, Jiayi, 2017. "Multi-model probabilities based state fusion estimation method of lithium-ion battery for electric vehicles: State-of-energy," Applied Energy, Elsevier, vol. 194(C), pages 560-568.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:194:y:2017:i:c:p:569-577. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.