IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i15p2983-d254152.html
   My bibliography  Save this article

How to Comply with the Paris Agreement Temperature Goal: Global Carbon Pricing According to Carbon Budgets

Author

Listed:
  • Martin Zapf

    (Coburg University of Applied Sciences and Arts, Institute of High Voltage Technology, Energy System & Asset Diagnostics (IHEA), 96450 Coburg, Germany)

  • Hermann Pengg

    (AUDI AG, 85045 Ingolstadt, Germany)

  • Christian Weindl

    (Coburg University of Applied Sciences and Arts, Institute of High Voltage Technology, Energy System & Asset Diagnostics (IHEA), 96450 Coburg, Germany)

Abstract

Avoiding irreversible climate change as effectively as possible is one of the most pressing challenges of society. Carbon pricing that is uniformly valid on a global and cross-sectoral basis represents a cost-efficient policy tool to meet this challenge. Carbon pricing allows external costs to be allocated or internalized on a polluter-pays principle. It is shown that a global emissions cap-and-trade system is the most suitable market-based instrument for reducing global emissions levels, in line with the temperature goal set by the Paris Agreement. A proposal for its design is presented in this paper. This instrument encourages worldwide measures, with the lowest marginal abatement cost, according to a pre-defined reduction path. Thereby, it ensures compliance with a specified remaining carbon budget to meet a certain temperature limit in a cost-efficient manner. Possible reduction paths are presented in this paper. Weaknesses in the design of existing emissions trading systems (ETS), such as the EU ETS, are identified and avoided in the proposed instrument. The framework solves several problems of today’s climate change policies, like the free rider problem, carbon leakage, rebound effects or the green paradox. The introduction of a global uniform carbon pricing instrument and its concrete design should be the subject of policy, especially at the United Nations climate change conferences, as soon as possible in order to allow for rapid implementation. If a global ETS with a uniform carbon price could be introduced, additional governmental regulations with regard to carbon emissions would become obsolete.

Suggested Citation

  • Martin Zapf & Hermann Pengg & Christian Weindl, 2019. "How to Comply with the Paris Agreement Temperature Goal: Global Carbon Pricing According to Carbon Budgets," Energies, MDPI, vol. 12(15), pages 1-20, August.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:15:p:2983-:d:254152
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/15/2983/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/15/2983/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cramton, Peter & Kerr, Suzi, 2002. "Tradeable carbon permit auctions: How and why to auction not grandfather," Energy Policy, Elsevier, vol. 30(4), pages 333-345, March.
    2. Michael A. Mehling & Harro van Asselt & Kasturi Das & Susanne Droege, 2018. "Beat protectionism and emissions at a stroke," Nature, Nature, vol. 559(7714), pages 321-324, July.
    3. Fell, Harrison & MacKenzie, Ian A. & Pizer, William A., 2012. "Prices versus quantities versus bankable quantities," Resource and Energy Economics, Elsevier, vol. 34(4), pages 607-623.
    4. Burtraw, Dallas & Palmer, Karen & Kahn, Danny, 2010. "A symmetric safety valve," Energy Policy, Elsevier, vol. 38(9), pages 4921-4932, September.
    5. Hans-Werner Sinn, 2015. "Introductory Comment–The Green Paradox: A Supply-Side View of the Climate Problem," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 9(2), pages 239-245.
    6. Achtnicht, Martin & von Graevenitz, Kathrine & Koesler, Simon & Löschel, Andreas & Schoeman, Beaumont & Tovar Reaños, Miguel Angel, 2015. "Including road transport in the EU-ETS: An alternative for the future?," ZEW Expertises, ZEW - Leibniz Centre for European Economic Research, number 111452.
    7. Hoel, Michael & Karp, Larry, 2001. "Taxes and quotas for a stock pollutant with multiplicative uncertainty," Journal of Public Economics, Elsevier, vol. 82(1), pages 91-114, October.
    8. Robert E. Kopp & Rachael Shwom & Gernot Wagner & Jiacan Yuan, 2016. "Tipping elements and climate-economic shocks: Pathways toward integrated assessment," Papers 1603.00850, arXiv.org, revised Jul 2016.
    9. Derek Lemoine & Christian P. Traeger, 2016. "Economics of tipping the climate dominoes," Nature Climate Change, Nature, vol. 6(5), pages 514-519, May.
    10. Delavane Diaz & Frances Moore, 2017. "Quantifying the economic risks of climate change," Nature Climate Change, Nature, vol. 7(11), pages 774-782, November.
    11. Stéphane Zuber & Marc Fleurbaey & Maddalena Ferranna & Mark Budolfson & Francis Dennig & Kian Mintz-Woo & Robert Socolow & Dean Spears, 2019. "The Social Cost of Carbon: Valuing Inequality, Risk, and Population for Climate Policy," PSE-Ecole d'économie de Paris (Postprint) halshs-02400609, HAL.
    12. Newell, Richard G & Stavins, Robert N, 2003. "Cost Heterogeneity and the Potential Savings from Market-Based Policies," Journal of Regulatory Economics, Springer, vol. 23(1), pages 43-59, January.
    13. Hans-Werner Sinn, 2015. "The Green Paradox: A Supply-side View of the Climate Problem," CESifo Working Paper Series 5385, CESifo.
    14. Harrison Fell & Richard Morgenstern, 2010. "Alternative Approaches to Cost Containment in a Cap-and-Trade System," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 47(2), pages 275-297, October.
    15. Dietz, Simon & Stern, Nicholas, 2015. "Endogenous growth, convexity of damage and climate risk: how Nordhaus’ framework supports deep cuts in carbon emissions," LSE Research Online Documents on Economics 58406, London School of Economics and Political Science, LSE Library.
    16. Ackerman, Frank & Stanton, Elizabeth A., 2012. "Climate risks and carbon prices: Revising the social cost of carbon," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 6, pages 1-25.
    17. Fell, Harrison & Burtraw, Dallas & Morgenstern, Richard D. & Palmer, Karen L., 2012. "Soft and hard price collars in a cap-and-trade system: A comparative analysis," Journal of Environmental Economics and Management, Elsevier, vol. 64(2), pages 183-198.
    18. Paul Leiby & Jonathan Rubin, 2001. "Intertemporal Permit Trading for the Control of Greenhouse Gas Emissions," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 19(3), pages 229-256, July.
    19. Richard Schmalensee & Robert N. Stavins, 2017. "Lessons Learned from Three Decades of Experience with Cap and Trade," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 11(1), pages 59-79.
    20. Pizer, William A., 1999. "The optimal choice of climate change policy in the presence of uncertainty," Resource and Energy Economics, Elsevier, vol. 21(3-4), pages 255-287, August.
    21. Pizer, William A., 2002. "Combining price and quantity controls to mitigate global climate change," Journal of Public Economics, Elsevier, vol. 85(3), pages 409-434, September.
    22. Yongyang Cai & Timothy M. Lenton & Thomas S. Lontzek, 2016. "Risk of multiple interacting tipping points should encourage rapid CO2 emission reduction," Nature Climate Change, Nature, vol. 6(5), pages 520-525, May.
    23. Lucas Bretschger & Aimilia Pattakou, 2019. "Correction to: As Bad as it Gets: How Climate Damage Functions Affect Growth and the Social Cost of Carbon," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 72(1), pages 27-27, January.
    24. David F. Perkis & Timothy N. Cason & Wallace E. Tyner, 2016. "An Experimental Investigation of Hard and Soft Price Ceilings in Emissions Permit Markets," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 63(4), pages 703-718, April.
    25. Easwaran Narassimhan & Kelly S. Gallagher & Stefan Koester & Julio Rivera Alejo, 2018. "Carbon pricing in practice: a review of existing emissions trading systems," Climate Policy, Taylor & Francis Journals, vol. 18(8), pages 967-991, September.
    26. Lucas Bretschger & Aimilia Pattakou, 2019. "As Bad as it Gets: How Climate Damage Functions Affect Growth and the Social Cost of Carbon," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 72(1), pages 5-26, January.
    27. Roberts, Marc J. & Spence, Michael, 1976. "Effluent charges and licenses under uncertainty," Journal of Public Economics, Elsevier, vol. 5(3-4), pages 193-208.
    28. Jacob K. Goeree & Charles A. Holt & Karen Palmer & William Shobe & Dallas Burtraw, 2010. "An Experimental Study of Auctions Versus Grandfathering to Assign Pollution Permits," Journal of the European Economic Association, MIT Press, vol. 8(2-3), pages 514-525, 04-05.
    29. William D. Nordhaus, 1992. "The 'DICE' Model: Background and Structure of a Dynamic Integrated Climate-Economy Model of the Economics of Global Warming," Cowles Foundation Discussion Papers 1009, Cowles Foundation for Research in Economics, Yale University.
    30. Frederick Ploeg, 2018. "The safe carbon budget," Climatic Change, Springer, vol. 147(1), pages 47-59, March.
    31. Martin L. Weitzman, 1974. "Prices vs. Quantities," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 41(4), pages 477-491.
    32. Stern,Nicholas, 2007. "The Economics of Climate Change," Cambridge Books, Cambridge University Press, number 9780521700801.
    33. Simon Dietz & Nicholas Stern, 2015. "Endogenous Growth, Convexity of Damage and Climate Risk: How Nordhaus' Framework Supports Deep Cuts in Carbon Emissions," Economic Journal, Royal Economic Society, vol. 0(583), pages 574-620, March.
    34. Katharina Erdmann & Aleksandar Zaklan, 2018. "Linking Cap-and-Trade Systems," DIW Roundup: Politik im Fokus 123, DIW Berlin, German Institute for Economic Research.
    35. Stavins, Robert N., 1996. "Correlated Uncertainty and Policy Instrument Choice," Journal of Environmental Economics and Management, Elsevier, vol. 30(2), pages 218-232, March.
    36. Hope, Chris & Anderson, John & Wenman, Paul, 1993. "Policy analysis of the greenhouse effect : An application of the PAGE model," Energy Policy, Elsevier, vol. 21(3), pages 327-338, March.
    37. Cameron Hepburn, 2006. "Regulation by Prices, Quantities, or Both: A Review of Instrument Choice," Oxford Review of Economic Policy, Oxford University Press and Oxford Review of Economic Policy Limited, vol. 22(2), pages 226-247, Summer.
    38. Aude Pommeret & Katheline Schubert, 2018. "Intertemporal Emission Permits Trading Under Uncertainty and Irreversibility," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 71(1), pages 73-97, September.
    39. Stranlund, John K. & Moffitt, L. Joe, 2014. "Enforcement and price controls in emissions trading," Journal of Environmental Economics and Management, Elsevier, vol. 67(1), pages 20-38.
    40. Sinn, Hans-Werner, 2012. "The Green Paradox: A Supply-Side Approach to Global Warming," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262016680, December.
    41. Peter Cramton, Axel Ockenfels, and Steven Stoft, 2015. "An International Carbon-Price Commitment Promotes Cooperation," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 2).
    42. William Nordhaus, 2015. "Climate Clubs: Overcoming Free-Riding in International Climate Policy," American Economic Review, American Economic Association, vol. 105(4), pages 1339-1370, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Debora Sotto & Arlindo Philippi & Tan Yigitcanlar & Md Kamruzzaman, 2019. "Aligning Urban Policy with Climate Action in the Global South: Are Brazilian Cities Considering Climate Emergency in Local Planning Practice?," Energies, MDPI, vol. 12(18), pages 1-31, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu, Jongmin & Mallory, Mindy L., 2015. "An optimal hybrid emission control system in a multiple compliance period model," Resource and Energy Economics, Elsevier, vol. 39(C), pages 16-28.
    2. Richard S.J. Tol, 2021. "Estimates of the social cost of carbon have not changed over time," Working Paper Series 0821, Department of Economics, University of Sussex Business School.
    3. Richard S. J. Tol, 2021. "Estimates of the social cost of carbon have increased over time," Papers 2105.03656, arXiv.org, revised Aug 2022.
    4. John Stranlund, 2015. "A Note on Correlated Uncertainty and Hybrid Environmental Policies," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 61(4), pages 463-476, August.
    5. Timothy N. Cason & John K. Stranlund & Frans P. de Vries, 2022. "Investment Incentives in Tradable Emissions Markets with Price Floors Approach," Purdue University Economics Working Papers 1331, Purdue University, Department of Economics.
    6. Tang, Bao-Jun & Wang, Xiang-Yu & Wei, Yi-Ming, 2019. "Quantities versus prices for best social welfare in carbon reduction: A literature review," Applied Energy, Elsevier, vol. 233, pages 554-564.
    7. Rising, James A. & Taylor, Charlotte & Ives, Matthew C. & Ward, Robert E.t., 2022. "Challenges and innovations in the economic evaluation of the risks of climate change," LSE Research Online Documents on Economics 114941, London School of Economics and Political Science, LSE Library.
    8. Buchholz Wolfgang & Heindl Peter, 2015. "Ökonomische Herausforderungen des Klimawandels," Perspektiven der Wirtschaftspolitik, De Gruyter, vol. 16(4), pages 324-350, December.
    9. Rising, James A. & Taylor, Charlotte & Ives, Matthew C. & Ward, Robert E.T., 2022. "Challenges and innovations in the economic evaluation of the risks of climate change," Ecological Economics, Elsevier, vol. 197(C).
    10. Joseph E. Aldy & Alan J. Krupnick & Richard G. Newell & Ian W. H. Parry & William A. Pizer, 2010. "Designing Climate Mitigation Policy," Journal of Economic Literature, American Economic Association, vol. 48(4), pages 903-934, December.
    11. Thomas D. Jeitschko & Pallavi Pal, 2021. "Curbing Price Fluctuations in Cap-and-Trade Auctions," CESifo Working Paper Series 9266, CESifo.
    12. Harrison Fell & Richard Morgenstern, 2010. "Alternative Approaches to Cost Containment in a Cap-and-Trade System," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 47(2), pages 275-297, October.
    13. Adrian Amelung, 2016. "Das "Paris-Agreement": Durchbruch der Top-Down-Klimaschutzverhandlungen im Kreise der Vereinten Nationen," Otto-Wolff-Institut Discussion Paper Series 03/2016, Otto-Wolff-Institut für Wirtschaftsordnung, Köln, Deutschland.
    14. Botor, Benjamin & Böcker, Benjamin & Kallabis, Thomas & Weber, Christoph, 2021. "Information shocks and profitability risks for power plant investments – impacts of policy instruments," Energy Economics, Elsevier, vol. 102(C).
    15. Pezzey, John C.V. & Jotzo, Frank, 2010. "Tax-Versus-Trading and Free Emission Shares as Issues for Climate Policy Design," Research Reports 95049, Australian National University, Environmental Economics Research Hub.
    16. Kollenberg, Sascha & Taschini, Luca, 2016. "Emissions trading systems with cap adjustments," Journal of Environmental Economics and Management, Elsevier, vol. 80(C), pages 20-36.
    17. Stranlund, John K. & Murphy, James J. & Spraggon, John M., 2014. "Price controls and banking in emissions trading: An experimental evaluation," Journal of Environmental Economics and Management, Elsevier, vol. 68(1), pages 71-86.
    18. Stiglitz, Joseph E., 2019. "Addressing climate change through price and non-price interventions," European Economic Review, Elsevier, vol. 119(C), pages 594-612.
    19. Fell, Harrison & MacKenzie, Ian A. & Pizer, William A., 2012. "Prices versus quantities versus bankable quantities," Resource and Energy Economics, Elsevier, vol. 34(4), pages 607-623.
    20. Warwick McKibbin & Adele Morris & Peter Wilcoxen, 2014. "A Proposal to Integrate Price Mechanisms into International Climate Negotiations," Asia and the Pacific Policy Studies, Wiley Blackwell, vol. 1(3), pages 600-608, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:15:p:2983-:d:254152. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.