IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i6p1602-d153270.html
   My bibliography  Save this article

Strategic Behavior of Retailers for Risk Reduction and Profit Increment via Distributed Generators and Demand Response Programs

Author

Listed:
  • Mahmood Hosseini Imani

    (Department of Electrical Engineering, Faculty of Engineering, University of Guilan, Rasht 4199613776, Iran)

  • Shaghayegh Zalzar

    (Department of Energy, Politecnico di Torino, 10129 Turin, Italy)

  • Amir Mosavi

    (Institute of Structural Mechanics, Bauhaus University Weimar, 99423 Weimar, Germany
    Institute of Automation, Kando Kalman Faculty of Electrical Engineering, Obuda University, 1431 Budapest, Hungary)

  • Shahaboddin Shamshirband

    (Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam
    Faculty of Information Technology, Ton Duc Thang University, Ho Chi Minh City, Vietnam)

Abstract

Following restructuring of power industry, electricity supply to end-use customers has undergone fundamental changes. In the restructured power system, some of the responsibilities of the vertically integrated distribution companies have been assigned to network managers and retailers. Under the new situation, retailers are in charge of providing electrical energy to electricity consumers who have already signed contract with them. Retailers usually provide the required energy at a variable price, from wholesale electricity markets, forward contracts with energy producers, or distributed energy generators, and sell it at a fixed retail price to its clients. Different strategies are implemented by retailers to reduce the potential financial losses and risks associated with the uncertain nature of wholesale spot electricity market prices and electrical load of the consumers. In this paper, the strategic behavior of retailers in implementing forward contracts, distributed energy sources, and demand-response programs with the aim of increasing their profit and reducing their risk, while keeping their retail prices as low as possible, is investigated. For this purpose, risk management problem of the retailer companies collaborating with wholesale electricity markets, is modeled through bi-level programming approach and a comprehensive framework for retail electricity pricing, considering customers’ constraints, is provided in this paper. In the first level of the proposed bi-level optimization problem, the retailer maximizes its expected profit for a given risk level of profit variability, while in the second level, the customers minimize their consumption costs. The proposed programming problem is modeled as Mixed Integer programming (MIP) problem and can be efficiently solved using available commercial solvers. The simulation results on a test case approve the effectiveness of the proposed demand-response program based on dynamic pricing approach on reducing the retailer’s risk and increasing its profit.

Suggested Citation

  • Mahmood Hosseini Imani & Shaghayegh Zalzar & Amir Mosavi & Shahaboddin Shamshirband, 2018. "Strategic Behavior of Retailers for Risk Reduction and Profit Increment via Distributed Generators and Demand Response Programs," Energies, MDPI, vol. 11(6), pages 1-24, June.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:6:p:1602-:d:153270
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/6/1602/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/6/1602/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nojavan, Sayyad & Zare, Kazem & Mohammadi-Ivatloo, Behnam, 2017. "Optimal stochastic energy management of retailer based on selling price determination under smart grid environment in the presence of demand response program," Applied Energy, Elsevier, vol. 187(C), pages 449-464.
    2. Nwulu, Nnamdi I. & Xia, Xiaohua, 2017. "Optimal dispatch for a microgrid incorporating renewables and demand response," Renewable Energy, Elsevier, vol. 101(C), pages 16-28.
    3. Khojasteh, Meysam & Jadid, Shahram, 2015. "Decision-making framework for supplying electricity from distributed generation-owning retailers to price-sensitive customers," Utilities Policy, Elsevier, vol. 37(C), pages 1-12.
    4. Aghaei, Jamshid & Alizadeh, Mohammad-Iman & Siano, Pierluigi & Heidari, Alireza, 2016. "Contribution of emergency demand response programs in power system reliability," Energy, Elsevier, vol. 103(C), pages 688-696.
    5. Mohammad Ali Fotouhi Ghazvini & João Soares & Hugo Morais & Rui Castro & Zita Vale, 2017. "Dynamic Pricing for Demand Response Considering Market Price Uncertainty," Energies, MDPI, vol. 10(9), pages 1-20, August.
    6. Aouss Gabash & Pu Li, 2016. "On Variable Reverse Power Flow-Part I: Active-Reactive Optimal Power Flow with Reactive Power of Wind Stations," Energies, MDPI, vol. 9(3), pages 1-12, February.
    7. Pouria Sheikhahmadi & Ramyar Mafakheri & Salah Bahramara & Maziar Yazdani Damavandi & João P. S. Catalão, 2018. "Risk-Based Two-Stage Stochastic Optimization Problem of Micro-Grid Operation with Renewables and Incentive-Based Demand Response Programs," Energies, MDPI, vol. 11(3), pages 1-17, March.
    8. Xiaolin Ayón & María Ángeles Moreno & Julio Usaola, 2017. "Aggregators’ Optimal Bidding Strategy in Sequential Day-Ahead and Intraday Electricity Spot Markets," Energies, MDPI, vol. 10(4), pages 1-20, April.
    9. Israel M. Kirzner, 1997. "Entrepreneurial Discovery and the Competitive Market Process: An Austrian Approach," Journal of Economic Literature, American Economic Association, vol. 35(1), pages 60-85, March.
    10. Zheng Ma & Joy Dalmacio Billanes & Bo Nørregaard Jørgensen, 2017. "Aggregation Potentials for Buildings—Business Models of Demand Response and Virtual Power Plants," Energies, MDPI, vol. 10(10), pages 1-19, October.
    11. Yousefi, Shaghayegh & Moghaddam, Mohsen Parsa & Majd, Vahid Johari, 2011. "Optimal real time pricing in an agent-based retail market using a comprehensive demand response model," Energy, Elsevier, vol. 36(9), pages 5716-5727.
    12. Marzband, Mousa & Azarinejadian, Fatemeh & Savaghebi, Mehdi & Pouresmaeil, Edris & Guerrero, Josep M. & Lightbody, Gordon, 2018. "Smart transactive energy framework in grid-connected multiple home microgrids under independent and coalition operations," Renewable Energy, Elsevier, vol. 126(C), pages 95-106.
    13. Rockafellar, R. Tyrrell & Uryasev, Stanislav, 2002. "Conditional value-at-risk for general loss distributions," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1443-1471, July.
    14. Goutam Dutta & Krishnendranath Mitra, 2017. "A literature review on dynamic pricing of electricity," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(10), pages 1131-1145, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Deng, Tingting & Yan, Wenzhou & Nojavan, Sayyad & Jermsittiparsert, Kittisak, 2020. "Risk evaluation and retail electricity pricing using downside risk constraints method," Energy, Elsevier, vol. 192(C).
    2. Saeed Nosratabadi & Amir Mosavi & Shahaboddin Shamshirband & Edmundas Kazimieras Zavadskas & Andry Rakotonirainy & Kwok Wing Chau, 2019. "Sustainable Business Models: A Review," Sustainability, MDPI, vol. 11(6), pages 1-30, March.
    3. Nosratabadi, Saeed & Mosavi, Amir & Shamshirband, Shahaboddin & Zavadskas, Edmundas Kazimieras & Rakotonirainy, Andry & Chau, Kwok Wing, 2020. "Sustainable Business Models: A Review," OSF Preprints u4xw3, Center for Open Science.
    4. Diaz-Londono, Cesar & Enescu, Diana & Ruiz, Fredy & Mazza, Andrea, 2020. "Experimental modeling and aggregation strategy for thermoelectric refrigeration units as flexible loads," Applied Energy, Elsevier, vol. 272(C).
    5. Ghadi, Mojtaba Jabbari & Rajabi, Amin & Ghavidel, Sahand & Azizivahed, Ali & Li, Li & Zhang, Jiangfeng, 2019. "From active distribution systems to decentralized microgrids: A review on regulations and planning approaches based on operational factors," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    6. Nosratabadi, Saeed & Mosavi, Amir & Shamshirband, Shahaboddin & Zavadskas, Edmundas Kazimieras & Rakotonirainy, Andry & Chau, Kwok Wing, 2020. "Sustainable Business Models: A Review," OSF Preprints ts54m, Center for Open Science.
    7. Sen Guo & Wenyue Zhang & Xiao Gao, 2020. "Business Risk Evaluation of Electricity Retail Company in China Using a Hybrid MCDM Method," Sustainability, MDPI, vol. 12(5), pages 1-21, March.
    8. Chang Ye & Shihong Miao & Yaowang Li & Chao Li & Lixing Li, 2018. "Hierarchical Scheduling Scheme for AC/DC Hybrid Active Distribution Network Based on Multi-Stakeholders," Energies, MDPI, vol. 11(10), pages 1-16, October.
    9. Feihu Hu & Xuan Feng & Hui Cao, 2018. "A Short-Term Decision Model for Electricity Retailers: Electricity Procurement and Time-of-Use Pricing," Energies, MDPI, vol. 11(12), pages 1-18, November.
    10. Amir Mosavi & Mohsen Salimi & Sina Faizollahzadeh Ardabili & Timon Rabczuk & Shahaboddin Shamshirband & Annamaria R. Varkonyi-Koczy, 2019. "State of the Art of Machine Learning Models in Energy Systems, a Systematic Review," Energies, MDPI, vol. 12(7), pages 1-42, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ussama Assad & Muhammad Arshad Shehzad Hassan & Umar Farooq & Asif Kabir & Muhammad Zeeshan Khan & S. Sabahat H. Bukhari & Zain ul Abidin Jaffri & Judit Oláh & József Popp, 2022. "Smart Grid, Demand Response and Optimization: A Critical Review of Computational Methods," Energies, MDPI, vol. 15(6), pages 1-36, March.
    2. Davarzani, Sima & Pisica, Ioana & Taylor, Gareth A. & Munisami, Kevin J., 2021. "Residential Demand Response Strategies and Applications in Active Distribution Network Management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    3. Alizadeh, Ali & Kamwa, Innocent & Moeini, Ali & Mohseni-Bonab, Seyed Masoud, 2023. "Energy management in microgrids using transactive energy control concept under high penetration of Renewables; A survey and case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    4. Wu, Xiong & Qi, Shixiong & Wang, Zhao & Duan, Chao & Wang, Xiuli & Li, Furong, 2019. "Optimal scheduling for microgrids with hydrogen fueling stations considering uncertainty using data-driven approach," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    5. Botelho, D.F. & de Oliveira, L.W. & Dias, B.H. & Soares, T.A. & Moraes, C.A., 2022. "Prosumer integration into the Brazilian energy sector: An overview of innovative business models and regulatory challenges," Energy Policy, Elsevier, vol. 161(C).
    6. Mark Kipngetich Kiptoo & Oludamilare Bode Adewuyi & Harun Or Rashid Howlader & Akito Nakadomari & Tomonobu Senjyu, 2023. "Optimal Capacity and Operational Planning for Renewable Energy-Based Microgrid Considering Different Demand-Side Management Strategies," Energies, MDPI, vol. 16(10), pages 1-25, May.
    7. Mohseni, Soheil & Brent, Alan C. & Kelly, Scott & Browne, Will N., 2022. "Demand response-integrated investment and operational planning of renewable and sustainable energy systems considering forecast uncertainties: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    8. Khaloie, Hooman & Abdollahi, Amir & Shafie-khah, Miadreza & Anvari-Moghaddam, Amjad & Nojavan, Sayyad & Siano, Pierluigi & Catalão, João P.S., 2020. "Coordinated wind-thermal-energy storage offering strategy in energy and spinning reserve markets using a multi-stage model," Applied Energy, Elsevier, vol. 259(C).
    9. Dadashi, Mojtaba & Haghifam, Sara & Zare, Kazem & Haghifam, Mahmoud-Reza & Abapour, Mehdi, 2020. "Short-term scheduling of electricity retailers in the presence of Demand Response Aggregators: A two-stage stochastic Bi-Level programming approach," Energy, Elsevier, vol. 205(C).
    10. Rom'an P'erez-Santalla & Miguel Carri'on & Carlos Ruiz, 2021. "Optimal pricing for electricity retailers based on data-driven consumers' price-response," Papers 2110.02735, arXiv.org, revised Feb 2022.
    11. Dharmesh Dabhi & Kartik Pandya & Joao Soares & Fernando Lezama & Zita Vale, 2022. "Cross Entropy Covariance Matrix Adaptation Evolution Strategy for Solving the Bi-Level Bidding Optimization Problem in Local Energy Markets," Energies, MDPI, vol. 15(13), pages 1-20, July.
    12. Román Pérez-Santalla & Miguel Carrión & Carlos Ruiz, 2022. "Optimal pricing for electricity retailers based on data-driven consumers’ price-response," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(3), pages 430-464, October.
    13. Ning Zhang & Nien-Che Yang & Jian-Hong Liu, 2021. "Optimal Time-of-Use Electricity Price for a Microgrid System Considering Profit of Power Company and Demand Users," Energies, MDPI, vol. 14(19), pages 1-13, October.
    14. Mohammad Ali Fotouhi Ghazvini & João Soares & Hugo Morais & Rui Castro & Zita Vale, 2017. "Dynamic Pricing for Demand Response Considering Market Price Uncertainty," Energies, MDPI, vol. 10(9), pages 1-20, August.
    15. Nojavan, Sayyad & Zare, Kazem & Mohammadi-Ivatloo, Behnam, 2017. "Robust bidding and offering strategies of electricity retailer under multi-tariff pricing," Energy Economics, Elsevier, vol. 68(C), pages 359-372.
    16. Hyung-Joon Kim & Mun-Kyeom Kim, 2019. "Multi-Objective Based Optimal Energy Management of Grid-Connected Microgrid Considering Advanced Demand Response," Energies, MDPI, vol. 12(21), pages 1-28, October.
    17. Qi Zhang & Shaohua Zhang & Xian Wang & Xue Li & Lei Wu, 2020. "Conditional-Robust-Profit-Based Optimization Model for Electricity Retailers with Shiftable Demand," Energies, MDPI, vol. 13(6), pages 1-19, March.
    18. Pedro Faria, 2019. "Distributed Energy Resources Management," Energies, MDPI, vol. 12(3), pages 1-3, February.
    19. Beraldi, Patrizia & Khodaparasti, Sara, 2023. "Designing electricity tariffs in the retail market: A stochastic bi-level approach," International Journal of Production Economics, Elsevier, vol. 257(C).
    20. Kharrati, Saeed & Kazemi, Mostafa & Ehsan, Mehdi, 2016. "Equilibria in the competitive retail electricity market considering uncertainty and risk management," Energy, Elsevier, vol. 106(C), pages 315-328.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:6:p:1602-:d:153270. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.