IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v138y2021ics1364032120308510.html
   My bibliography  Save this article

Residential Demand Response Strategies and Applications in Active Distribution Network Management

Author

Listed:
  • Davarzani, Sima
  • Pisica, Ioana
  • Taylor, Gareth A.
  • Munisami, Kevin J.

Abstract

Electricity distribution is moving towards active, more flexible, smarter and decentralized energy systems. This transition requires System Operators (SO) to dynamically monitor and control the power flow across the network. Demand Response (DR) can be considered as an alternative solution to the costly investment of upgrading conventional Distribution Networks (DN). Hence, the role of DR as a considerable potential of elastic demands in the Active Distribution Network Management (ADNM) is vital. The aim of this paper is to review the recent literature and pilot implementations towards residential DR activation and applications at the electricity distribution level. Background concepts, DR programmes and key participants in ADNM are explained. DR activation strategies for residential demand responsiveness at the network level are categorized and discussed together with the challenges and future directions of this technology. The most relevant DR innovation trials in Great Britain (GB) and their outcomes are also discussed.

Suggested Citation

  • Davarzani, Sima & Pisica, Ioana & Taylor, Gareth A. & Munisami, Kevin J., 2021. "Residential Demand Response Strategies and Applications in Active Distribution Network Management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
  • Handle: RePEc:eee:rensus:v:138:y:2021:i:c:s1364032120308510
    DOI: 10.1016/j.rser.2020.110567
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032120308510
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2020.110567?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vega, A.M. & Santamaria, F. & Rivas, E., 2015. "Modeling for home electric energy management: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 948-959.
    2. Hirsch, Adam & Parag, Yael & Guerrero, Josep, 2018. "Microgrids: A review of technologies, key drivers, and outstanding issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 402-411.
    3. Siano, Pierluigi, 2014. "Demand response and smart grids—A survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 461-478.
    4. Nwulu, Nnamdi I. & Xia, Xiaohua, 2017. "Optimal dispatch for a microgrid incorporating renewables and demand response," Renewable Energy, Elsevier, vol. 101(C), pages 16-28.
    5. Pavani Ponnaganti & Jayakrishnan R Pillai & Birgitte Bak‐Jensen, 2018. "Opportunities and challenges of demand response in active distribution networks," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 7(1), January.
    6. Doostizadeh, Meysam & Ghasemi, Hassan, 2012. "A day-ahead electricity pricing model based on smart metering and demand-side management," Energy, Elsevier, vol. 46(1), pages 221-230.
    7. Imani, Mahmood Hosseini & Ghadi, M. Jabbari & Ghavidel, Sahand & Li, Li, 2018. "Demand Response Modeling in Microgrid Operation: a Review and Application for Incentive-Based and Time-Based Programs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 486-499.
    8. Lu, Renzhi & Hong, Seung Ho, 2019. "Incentive-based demand response for smart grid with reinforcement learning and deep neural network," Applied Energy, Elsevier, vol. 236(C), pages 937-949.
    9. Baghaee, H.R. & Mirsalim, M. & Gharehpetian, G.B. & Talebi, H.A., 2016. "Reliability/cost-based multi-objective Pareto optimal design of stand-alone wind/PV/FC generation microgrid system," Energy, Elsevier, vol. 115(P1), pages 1022-1041.
    10. Paterakis, Nikolaos G. & Erdinç, Ozan & Catalão, João P.S., 2017. "An overview of Demand Response: Key-elements and international experience," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 871-891.
    11. Walawalkar, Rahul & Blumsack, Seth & Apt, Jay & Fernands, Stephen, 2008. "An economic welfare analysis of demand response in the PJM electricity market," Energy Policy, Elsevier, vol. 36(10), pages 3692-3702, October.
    12. Venkatesan, Naveen & Solanki, Jignesh & Solanki, Sarika Khushalani, 2012. "Residential Demand Response model and impact on voltage profile and losses of an electric distribution network," Applied Energy, Elsevier, vol. 96(C), pages 84-91.
    13. Antonopoulos, Ioannis & Robu, Valentin & Couraud, Benoit & Kirli, Desen & Norbu, Sonam & Kiprakis, Aristides & Flynn, David & Elizondo-Gonzalez, Sergio & Wattam, Steve, 2020. "Artificial intelligence and machine learning approaches to energy demand-side response: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    14. Kang, Byung O. & Lee, Munsu & Kim, Youngil & Jung, Jaesung, 2018. "Economic analysis of a customer-installed energy storage system for both self-saving operation and demand response program participation in South Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 69-83.
    15. Xiaolin Ayón & María Ángeles Moreno & Julio Usaola, 2017. "Aggregators’ Optimal Bidding Strategy in Sequential Day-Ahead and Intraday Electricity Spot Markets," Energies, MDPI, vol. 10(4), pages 1-20, April.
    16. Lüth, Alexandra & Zepter, Jan Martin & Crespo del Granado, Pedro & Egging, Ruud, 2018. "Local electricity market designs for peer-to-peer trading: The role of battery flexibility," Applied Energy, Elsevier, vol. 229(C), pages 1233-1243.
    17. Zhang, Chenghua & Wu, Jianzhong & Zhou, Yue & Cheng, Meng & Long, Chao, 2018. "Peer-to-Peer energy trading in a Microgrid," Applied Energy, Elsevier, vol. 220(C), pages 1-12.
    18. Alam, Muhammad Raisul & St-Hilaire, Marc & Kunz, Thomas, 2019. "Peer-to-peer energy trading among smart homes," Applied Energy, Elsevier, vol. 238(C), pages 1434-1443.
    19. Afzalan, Milad & Jazizadeh, Farrokh, 2019. "Residential loads flexibility potential for demand response using energy consumption patterns and user segments," Applied Energy, Elsevier, vol. 254(C).
    20. Ren, Hongbo & Zhou, Weisheng & Nakagami, Ken'ichi & Gao, Weijun & Wu, Qiong, 2010. "Multi-objective optimization for the operation of distributed energy systems considering economic and environmental aspects," Applied Energy, Elsevier, vol. 87(12), pages 3642-3651, December.
    21. Abhinandana Boodi & Karim Beddiar & Malek Benamour & Yassine Amirat & Mohamed Benbouzid, 2018. "Intelligent Systems for Building Energy and Occupant Comfort Optimization: A State of the Art Review and Recommendations," Energies, MDPI, vol. 11(10), pages 1-26, September.
    22. Abubakar, I. & Khalid, S.N. & Mustafa, M.W. & Shareef, Hussain & Mustapha, M., 2017. "Application of load monitoring in appliances’ energy management – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 235-245.
    23. Zhou, Yue & Wu, Jianzhong & Long, Chao, 2018. "Evaluation of peer-to-peer energy sharing mechanisms based on a multiagent simulation framework," Applied Energy, Elsevier, vol. 222(C), pages 993-1022.
    24. Blyth, William & McCarthy, Rory & Gross, Robert, 2015. "Financing the UK power sector: Is the money available?," Energy Policy, Elsevier, vol. 87(C), pages 607-622.
    25. Good, Nicholas & Ellis, Keith A. & Mancarella, Pierluigi, 2017. "Review and classification of barriers and enablers of demand response in the smart grid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 57-72.
    26. Long, Chao & Wu, Jianzhong & Zhou, Yue & Jenkins, Nick, 2018. "Peer-to-peer energy sharing through a two-stage aggregated battery control in a community Microgrid," Applied Energy, Elsevier, vol. 226(C), pages 261-276.
    27. Haider, Haider Tarish & See, Ong Hang & Elmenreich, Wilfried, 2016. "A review of residential demand response of smart grid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 166-178.
    28. Kaabeche, A. & Belhamel, M. & Ibtiouen, R., 2011. "Sizing optimization of grid-independent hybrid photovoltaic/wind power generation system," Energy, Elsevier, vol. 36(2), pages 1214-1222.
    29. Zakariazadeh, Alireza & Homaee, Omid & Jadid, Shahram & Siano, Pierluigi, 2014. "A new approach for real time voltage control using demand response in an automated distribution system," Applied Energy, Elsevier, vol. 117(C), pages 157-166.
    30. Andoni, Merlinda & Robu, Valentin & Flynn, David & Abram, Simone & Geach, Dale & Jenkins, David & McCallum, Peter & Peacock, Andrew, 2019. "Blockchain technology in the energy sector: A systematic review of challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 100(C), pages 143-174.
    31. Beckel, Christian & Sadamori, Leyna & Staake, Thorsten & Santini, Silvia, 2014. "Revealing household characteristics from smart meter data," Energy, Elsevier, vol. 78(C), pages 397-410.
    32. Coelho, Vitor N. & Weiss Cohen, Miri & Coelho, Igor M. & Liu, Nian & Guimarães, Frederico Gadelha, 2017. "Multi-agent systems applied for energy systems integration: State-of-the-art applications and trends in microgrids," Applied Energy, Elsevier, vol. 187(C), pages 820-832.
    33. Santos, Gabriel & Pinto, Tiago & Praça, Isabel & Vale, Zita, 2016. "MASCEM: Optimizing the performance of a multi-agent system," Energy, Elsevier, vol. 111(C), pages 513-524.
    34. Aalami, H.A. & Moghaddam, M. Parsa & Yousefi, G.R., 2010. "Demand response modeling considering Interruptible/Curtailable loads and capacity market programs," Applied Energy, Elsevier, vol. 87(1), pages 243-250, January.
    35. Perera, A.T.D. & Attalage, R.A. & Perera, K.K.C.K. & Dassanayake, V.P.C., 2013. "A hybrid tool to combine multi-objective optimization and multi-criterion decision making in designing standalone hybrid energy systems," Applied Energy, Elsevier, vol. 107(C), pages 412-425.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hessam Golmohamadi, 2022. "Demand-Side Flexibility in Power Systems: A Survey of Residential, Industrial, Commercial, and Agricultural Sectors," Sustainability, MDPI, vol. 14(13), pages 1-16, June.
    2. Rene Prenc & Michele Rojnić & Dubravko Franković & Saša Vlahinić, 2022. "On the Development of Overcurrent Relay Optimization Problem for Active Distribution Networks," Energies, MDPI, vol. 15(18), pages 1-28, September.
    3. Irina I. Picioroaga & Andrei M. Tudose & Dorian O. Sidea & Constantin Bulac, 2022. "Supply Restoration in Active Distribution Networks Based on Soft Open Points with Embedded DC Microgrids," Mathematics, MDPI, vol. 10(2), pages 1-21, January.
    4. Cai, Qiran & Xu, Qingyang & Qing, Jing & Shi, Gang & Liang, Qiao-Mei, 2022. "Promoting wind and photovoltaics renewable energy integration through demand response: Dynamic pricing mechanism design and economic analysis for smart residential communities," Energy, Elsevier, vol. 261(PB).
    5. Wang, Chong & Ju, Ping & Wu, Feng & Pan, Xueping & Wang, Zhaoyu, 2022. "A systematic review on power system resilience from the perspective of generation, network, and load," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    6. Liu, Zhengguang & Guo, Zhiling & Chen, Qi & Song, Chenchen & Shang, Wenlong & Yuan, Meng & Zhang, Haoran, 2023. "A review of data-driven smart building-integrated photovoltaic systems: Challenges and objectives," Energy, Elsevier, vol. 263(PE).
    7. Jun Dong & Dongran Liu & Xihao Dou & Bo Li & Shiyao Lv & Yuzheng Jiang & Tongtao Ma, 2021. "Key Issues and Technical Applications in the Study of Power Markets as the System Adapts to the New Power System in China," Sustainability, MDPI, vol. 13(23), pages 1-29, December.
    8. Golmohamadi, Hessam, 2022. "Demand-side management in industrial sector: A review of heavy industries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Filipe Bandeiras & Álvaro Gomes & Mário Gomes & Paulo Coelho, 2023. "Exploring Energy Trading Markets in Smart Grid and Microgrid Systems and Their Implications for Sustainability in Smart Cities," Energies, MDPI, vol. 16(2), pages 1-41, January.
    2. Azim, M. Imran & Tushar, Wayes & Saha, Tapan K. & Yuen, Chau & Smith, David, 2022. "Peer-to-peer kilowatt and negawatt trading: A review of challenges and recent advances in distribution networks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    3. Schwidtal, J.M. & Piccini, P. & Troncia, M. & Chitchyan, R. & Montakhabi, M. & Francis, C. & Gorbatcheva, A. & Capper, T. & Mustafa, M.A. & Andoni, M. & Robu, V. & Bahloul, M. & Scott, I.J. & Mbavarir, 2023. "Emerging business models in local energy markets: A systematic review of peer-to-peer, community self-consumption, and transactive energy models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
    4. Capper, Timothy & Gorbatcheva, Anna & Mustafa, Mustafa A. & Bahloul, Mohamed & Schwidtal, Jan Marc & Chitchyan, Ruzanna & Andoni, Merlinda & Robu, Valentin & Montakhabi, Mehdi & Scott, Ian J. & Franci, 2022. "Peer-to-peer, community self-consumption, and transactive energy: A systematic literature review of local energy market models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    5. Siripha Junlakarn & Phimsupha Kokchang & Kulyos Audomvongseree, 2022. "Drivers and Challenges of Peer-to-Peer Energy Trading Development in Thailand," Energies, MDPI, vol. 15(3), pages 1-25, February.
    6. Zhou, Yue & Wu, Jianzhong & Song, Guanyu & Long, Chao, 2020. "Framework design and optimal bidding strategy for ancillary service provision from a peer-to-peer energy trading community," Applied Energy, Elsevier, vol. 278(C).
    7. Zhou, Yuekuan & Lund, Peter D., 2023. "Peer-to-peer energy sharing and trading of renewable energy in smart communities ─ trading pricing models, decision-making and agent-based collaboration," Renewable Energy, Elsevier, vol. 207(C), pages 177-193.
    8. Meyabadi, A. Fattahi & Deihimi, M.H., 2017. "A review of demand-side management: Reconsidering theoretical framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 367-379.
    9. Esmat, Ayman & de Vos, Martijn & Ghiassi-Farrokhfal, Yashar & Palensky, Peter & Epema, Dick, 2021. "A novel decentralized platform for peer-to-peer energy trading market with blockchain technology," Applied Energy, Elsevier, vol. 282(PA).
    10. Jiang, Yanni & Zhou, Kaile & Lu, Xinhui & Yang, Shanlin, 2020. "Electricity trading pricing among prosumers with game theory-based model in energy blockchain environment," Applied Energy, Elsevier, vol. 271(C).
    11. Meritxell Domènech Monfort & César De Jesús & Natapon Wanapinit & Niklas Hartmann, 2022. "A Review of Peer-to-Peer Energy Trading with Standard Terminology Proposal and a Techno-Economic Characterisation Matrix," Energies, MDPI, vol. 15(23), pages 1-29, November.
    12. Bidan Zhang & Yang Du & Xiaoyang Chen & Eng Gee Lim & Lin Jiang & Ke Yan, 2022. "Potential Benefits for Residential Building with Photovoltaic Battery System Participation in Peer-to-Peer Energy Trading," Energies, MDPI, vol. 15(11), pages 1-21, May.
    13. Lyu, Cheng & Jia, Youwei & Xu, Zhao, 2021. "Fully decentralized peer-to-peer energy sharing framework for smart buildings with local battery system and aggregated electric vehicles," Applied Energy, Elsevier, vol. 299(C).
    14. Wang, Zibo & Yu, Xiaodan & Mu, Yunfei & Jia, Hongjie, 2020. "A distributed Peer-to-Peer energy transaction method for diversified prosumers in Urban Community Microgrid System," Applied Energy, Elsevier, vol. 260(C).
    15. Tsao, Yu-Chung & Thanh, Vo-Van, 2021. "Toward sustainable microgrids with blockchain technology-based peer-to-peer energy trading mechanism: A fuzzy meta-heuristic approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 136(C).
    16. Astriani, Yuli & Shafiullah, GM & Shahnia, Farhad, 2021. "Incentive determination of a demand response program for microgrids," Applied Energy, Elsevier, vol. 292(C).
    17. Soto, Esteban A. & Bosman, Lisa B. & Wollega, Ebisa & Leon-Salas, Walter D., 2021. "Peer-to-peer energy trading: A review of the literature," Applied Energy, Elsevier, vol. 283(C).
    18. Wenting Zhao & Jun Lv & Xilong Yao & Juanjuan Zhao & Zhixin Jin & Yan Qiang & Zheng Che & Chunwu Wei, 2019. "Consortium Blockchain-Based Microgrid Market Transaction Research," Energies, MDPI, vol. 12(20), pages 1-22, October.
    19. Milad Afzalan & Farrokh Jazizadeh, 2021. "Quantification of Demand-Supply Balancing Capacity among Prosumers and Consumers: Community Self-Sufficiency Assessment for Energy Trading," Energies, MDPI, vol. 14(14), pages 1-21, July.
    20. Herenčić, Lin & Kirac, Mislav & Keko, Hrvoje & Kuzle, Igor & Rajšl, Ivan, 2022. "Automated energy sharing in MV and LV distribution grids within an energy community: A case for Croatian city of Križevci with a hybrid renewable system," Renewable Energy, Elsevier, vol. 191(C), pages 176-194.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:138:y:2021:i:c:s1364032120308510. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.