IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i8p1117-d106614.html
   My bibliography  Save this article

Energy Refurbishment of an Office Building with Hybrid Photovoltaic System and Demand-Side Management

Author

Listed:
  • Giovani Almeida Dávi

    (Instituto de Energía Solar, Universidad Politécnica de Madrid, Av. Complutense 30, 28040 Madrid, Spain)

  • José López de Asiain

    (ETS Arquitectura, Universidad Politécnica de Madrid, Av. Juan de Herrera 4, 28040 Madrid, Spain)

  • Juan Solano

    (Instituto de Energía Solar, Universidad Politécnica de Madrid, Av. Complutense 30, 28040 Madrid, Spain)

  • Estefanía Caamaño-Martín

    (Instituto de Energía Solar, Universidad Politécnica de Madrid, Av. Complutense 30, 28040 Madrid, Spain)

  • César Bedoya

    (ETS Arquitectura, Universidad Politécnica de Madrid, Av. Juan de Herrera 4, 28040 Madrid, Spain)

Abstract

On-site photovoltaic (PV) and battery systems intend to improve buildings energy performance, however battery costs and monetary incentives are a major drawback for the introduction of these technologies into the electricity grids. This paper proposes an energy refurbishment of an office building based on multi-objective simulations. An innovative demand-side management approach is analyzed through the PV and battery control with the purpose of reducing grid power peaks and grid imported energy, as well as improving the project economy. Optimization results of load matching and grid interaction parameters, complemented with an economic analysis, are investigated in different scenarios. By means of battery use, the equivalent use of the grid connection is reduced by 12%, enhancing the grid interaction potential, and 10% of load matching rates can be increased. Project improvements indicate the grid connection capacity can be reduced by 13% and significant savings of up to 48% are achieved on yearly bills. The economy demonstrates the grid parity is only achieved for battery costs below 100 €/kWh and the payback period is large: 28 years. In the case with only PV system, the grid parity achieves better outcomes and the payback time is reduced by a half, making this a more attractive option.

Suggested Citation

  • Giovani Almeida Dávi & José López de Asiain & Juan Solano & Estefanía Caamaño-Martín & César Bedoya, 2017. "Energy Refurbishment of an Office Building with Hybrid Photovoltaic System and Demand-Side Management," Energies, MDPI, vol. 10(8), pages 1-24, August.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:8:p:1117-:d:106614
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/8/1117/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/8/1117/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lopes, Rui Amaral & Martins, João & Aelenei, Daniel & Lima, Celson Pantoja, 2016. "A cooperative net zero energy community to improve load matching," Renewable Energy, Elsevier, vol. 93(C), pages 1-13.
    2. Ratnam, Elizabeth L. & Weller, Steven R. & Kellett, Christopher M., 2015. "An optimization-based approach to scheduling residential battery storage with solar PV: Assessing customer benefit," Renewable Energy, Elsevier, vol. 75(C), pages 123-134.
    3. Cao, Sunliang & Hasan, Ala & Sirén, Kai, 2014. "Matching analysis for on-site hybrid renewable energy systems of office buildings with extended indices," Applied Energy, Elsevier, vol. 113(C), pages 230-247.
    4. de Oliveira e Silva, Guilherme & Hendrick, Patrick, 2016. "Lead–acid batteries coupled with photovoltaics for increased electricity self-sufficiency in households," Applied Energy, Elsevier, vol. 178(C), pages 856-867.
    5. Ahn, Byung-Lip & Jang, Cheol-Yong & Leigh, Seung-Bok & Yoo, Seunghwan & Jeong, Hakgeun, 2014. "Effect of LED lighting on the cooling and heating loads in office buildings," Applied Energy, Elsevier, vol. 113(C), pages 1484-1489.
    6. Orioli, Aldo & Di Gangi, Alessandra, 2017. "Six-years-long effects of the Italian policies for photovoltaics on the pay-back period of grid-connected PV systems installed in urban contexts," Energy, Elsevier, vol. 122(C), pages 458-470.
    7. Isa, Normazlina Mat & Das, Himadry Shekhar & Tan, Chee Wei & Yatim, A.H.M. & Lau, Kwan Yiew, 2016. "A techno-economic assessment of a combined heat and power photovoltaic/fuel cell/battery energy system in Malaysia hospital," Energy, Elsevier, vol. 112(C), pages 75-90.
    8. Balcombe, Paul & Rigby, Dan & Azapagic, Adisa, 2015. "Environmental impacts of microgeneration: Integrating solar PV, Stirling engine CHP and battery storage," Applied Energy, Elsevier, vol. 139(C), pages 245-259.
    9. Merei, Ghada & Moshövel, Janina & Magnor, Dirk & Sauer, Dirk Uwe, 2016. "Optimization of self-consumption and techno-economic analysis of PV-battery systems in commercial applications," Applied Energy, Elsevier, vol. 168(C), pages 171-178.
    10. Luthander, Rasmus & Widén, Joakim & Nilsson, Daniel & Palm, Jenny, 2015. "Photovoltaic self-consumption in buildings: A review," Applied Energy, Elsevier, vol. 142(C), pages 80-94.
    11. Salom, Jaume & Marszal, Anna Joanna & Widén, Joakim & Candanedo, José & Lindberg, Karen Byskov, 2014. "Analysis of load match and grid interaction indicators in net zero energy buildings with simulated and monitored data," Applied Energy, Elsevier, vol. 136(C), pages 119-131.
    12. Sehar, Fakeha & Pipattanasomporn, Manisa & Rahman, Saifur, 2016. "An energy management model to study energy and peak power savings from PV and storage in demand responsive buildings," Applied Energy, Elsevier, vol. 173(C), pages 406-417.
    13. Strbac, Goran, 2008. "Demand side management: Benefits and challenges," Energy Policy, Elsevier, vol. 36(12), pages 4419-4426, December.
    14. Berrada, Asmae & Loudiyi, Khalid & Zorkani, Izeddine, 2016. "Valuation of energy storage in energy and regulation markets," Energy, Elsevier, vol. 115(P1), pages 1109-1118.
    15. Orioli, Aldo & Di Gangi, Alessandra, 2017. "Six-years-long effects of the Italian policies for photovoltaics on the grid parity of grid-connected photovoltaic systems installed in urban contexts," Energy, Elsevier, vol. 130(C), pages 55-75.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Federica Cucchiella & Idiano D’Adamo & Massimo Gastaldi, 2017. "The Economic Feasibility of Residential Energy Storage Combined with PV Panels: The Role of Subsidies in Italy," Energies, MDPI, vol. 10(9), pages 1-18, September.
    2. Ana García-Garre & Antonio Gabaldón & Carlos Álvarez-Bel & María Del Carmen Ruiz-Abellón & Antonio Guillamón, 2018. "Integration of Demand Response and Photovoltaic Resources in Residential Segments," Sustainability, MDPI, vol. 10(9), pages 1-31, August.
    3. Cristina Piselli & Anna Laura Pisello & Mohammad Saffari & Alvaro de Gracia & Franco Cotana & Luisa F. Cabeza, 2019. "Cool Roof Impact on Building Energy Need: The Role of Thermal Insulation with Varying Climate Conditions," Energies, MDPI, vol. 12(17), pages 1-20, August.
    4. Ludwik Wicki & Robert Pietrzykowski & Dariusz Kusz, 2022. "Factors Determining the Development of Prosumer Photovoltaic Installations in Poland," Energies, MDPI, vol. 15(16), pages 1-19, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luthander, Rasmus & Nilsson, Annica M. & Widén, Joakim & Åberg, Magnus, 2019. "Graphical analysis of photovoltaic generation and load matching in buildings: A novel way of studying self-consumption and self-sufficiency," Applied Energy, Elsevier, vol. 250(C), pages 748-759.
    2. Jaszczur, Marek & Hassan, Qusay & Abdulateef, Ammar M. & Abdulateef, Jasim, 2021. "Assessing the temporal load resolution effect on the photovoltaic energy flows and self-consumption," Renewable Energy, Elsevier, vol. 169(C), pages 1077-1090.
    3. von Appen, J. & Braun, M., 2018. "Interdependencies between self-sufficiency preferences, techno-economic drivers for investment decisions and grid integration of residential PV storage systems," Applied Energy, Elsevier, vol. 229(C), pages 1140-1151.
    4. Kazhamiaka, Fiodar & Jochem, Patrick & Keshav, Srinivasan & Rosenberg, Catherine, 2017. "On the influence of jurisdiction on the profitability of residential photovoltaic-storage systems: A multi-national case study," Energy Policy, Elsevier, vol. 109(C), pages 428-440.
    5. de Oliveira e Silva, Guilherme & Hendrick, Patrick, 2017. "Photovoltaic self-sufficiency of Belgian households using lithium-ion batteries, and its impact on the grid," Applied Energy, Elsevier, vol. 195(C), pages 786-799.
    6. Villa-Arrieta, Manuel & Sumper, Andreas, 2019. "Economic evaluation of Nearly Zero Energy Cities," Applied Energy, Elsevier, vol. 237(C), pages 404-416.
    7. Carlos J. Sarasa-Maestro & Rodolfo Dufo-López & José L. Bernal-Agustín, 2016. "Analysis of Photovoltaic Self-Consumption Systems," Energies, MDPI, vol. 9(9), pages 1-18, August.
    8. Azuatalam, Donald & Paridari, Kaveh & Ma, Yiju & Förstl, Markus & Chapman, Archie C. & Verbič, Gregor, 2019. "Energy management of small-scale PV-battery systems: A systematic review considering practical implementation, computational requirements, quality of input data and battery degradation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 555-570.
    9. Petrollese, Mario & Cau, Giorgio & Cocco, Daniele, 2018. "Use of weather forecast for increasing the self-consumption rate of home solar systems: An Italian case study," Applied Energy, Elsevier, vol. 212(C), pages 746-758.
    10. Assunção, André & Moura, Pedro S. & de Almeida, Aníbal T., 2016. "Technical and economic assessment of the secondary use of repurposed electric vehicle batteries in the residential sector to support solar energy," Applied Energy, Elsevier, vol. 181(C), pages 120-131.
    11. Zhang, Yang & Campana, Pietro Elia & Lundblad, Anders & Yan, Jinyue, 2017. "Comparative study of hydrogen storage and battery storage in grid connected photovoltaic system: Storage sizing and rule-based operation," Applied Energy, Elsevier, vol. 201(C), pages 397-411.
    12. Solano, J.C. & Olivieri, L. & Caamaño-Martín, E., 2017. "Assessing the potential of PV hybrid systems to cover HVAC loads in a grid-connected residential building through intelligent control," Applied Energy, Elsevier, vol. 206(C), pages 249-266.
    13. Gergely, László Zsolt & Csoknyai, Tamás & Horváth, Miklós, 2022. "Novel load matching indicators for photovoltaic system sizing and evaluation," Applied Energy, Elsevier, vol. 327(C).
    14. Schram, Wouter L. & Lampropoulos, Ioannis & van Sark, Wilfried G.J.H.M., 2018. "Photovoltaic systems coupled with batteries that are optimally sized for household self-consumption: Assessment of peak shaving potential," Applied Energy, Elsevier, vol. 223(C), pages 69-81.
    15. von Appen, J. & Braun, M., 2018. "Strategic decision making of distribution network operators and investors in residential photovoltaic battery storage systems," Applied Energy, Elsevier, vol. 230(C), pages 540-550.
    16. Ayala-Gilardón, A. & Sidrach-de-Cardona, M. & Mora-López, L., 2018. "Influence of time resolution in the estimation of self-consumption and self-sufficiency of photovoltaic facilities," Applied Energy, Elsevier, vol. 229(C), pages 990-997.
    17. Moura, Ricardo & Brito, Miguel Centeno, 2019. "Prosumer aggregation policies, country experience and business models," Energy Policy, Elsevier, vol. 132(C), pages 820-830.
    18. Georgiou, Giorgos S. & Christodoulides, Paul & Kalogirou, Soteris A., 2019. "Real-time energy convex optimization, via electrical storage, in buildings – A review," Renewable Energy, Elsevier, vol. 139(C), pages 1355-1365.
    19. Angenendt, Georg & Zurmühlen, Sebastian & Axelsen, Hendrik & Sauer, Dirk Uwe, 2018. "Comparison of different operation strategies for PV battery home storage systems including forecast-based operation strategies," Applied Energy, Elsevier, vol. 229(C), pages 884-899.
    20. Bertolini, Marina & D'Alpaos, Chiara & Moretto, Michele, 2018. "Do Smart Grids boost investments in domestic PV plants? Evidence from the Italian electricity market," Energy, Elsevier, vol. 149(C), pages 890-902.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:8:p:1117-:d:106614. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.