IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v113y2014icp230-247.html
   My bibliography  Save this article

Matching analysis for on-site hybrid renewable energy systems of office buildings with extended indices

Author

Listed:
  • Cao, Sunliang
  • Hasan, Ala
  • Sirén, Kai

Abstract

The objective of this paper is to close the scientific gap that there is a lack of comprehensive matching analysis for the increasingly complicated on-site hybrid energy systems with a continuously decreased annual primary energy consumption/equivalent CO2 emission. Thus, a thorough matching analysis is conducted for the on-site hybrid systems of two office buildings under distinct climate conditions. Both of the studied buildings are equipped with PV and solar thermal assisted ground source heat pumps (GSHP), which can be controlled by six excess renewable electrical (REe) and one excess renewable thermal (REth) treatments with respect to certain thermal storage recharging and grid exporting strategies. The assessment criteria are six recently defined indices. With the aid of these indices, the key methodology is to conduct parametric analyses from the aspect of matching for solar thermal collector area and connection type, PV panel area, and electrical battery size regarding certain excess REe or REth treatments. The outcomes of matching analyses show the advantages of solar thermal collectors connected in a parallel fashion in meeting office heating demands, the consistency between electrical generation and demand in the daytime in office buildings, the enhancement of on-site heating and cooling by GSHP and free ground cooling, and the battery effect in technically improving electrical matching. Furthermore, the fluctuations of indices in the instantaneous matching analysis clearly reflect the matching situations of on-site renewable energy resources and demand conditions at each time-step, which will be helpful for the detailed investigation of specific system operations and user behaviours. It has been shown that the methodology used in the study can be helpful for aiding the design of increasingly complicated on-site hybrid energy systems.

Suggested Citation

  • Cao, Sunliang & Hasan, Ala & Sirén, Kai, 2014. "Matching analysis for on-site hybrid renewable energy systems of office buildings with extended indices," Applied Energy, Elsevier, vol. 113(C), pages 230-247.
  • Handle: RePEc:eee:appene:v:113:y:2014:i:c:p:230-247
    DOI: 10.1016/j.apenergy.2013.07.031
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261913005977
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2013.07.031?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fong, K.F. & Lee, C.K. & Chow, T.T., 2012. "Comparative study of solar cooling systems with building-integrated solar collectors for use in sub-tropical regions like Hong Kong," Applied Energy, Elsevier, vol. 90(1), pages 189-195.
    2. Amori, Karima E. & Taqi Al-Najjar, Hussein M., 2012. "Analysis of thermal and electrical performance of a hybrid (PV/T) air based solar collector for Iraq," Applied Energy, Elsevier, vol. 98(C), pages 384-395.
    3. Suárez, I. & Prieto, M.M. & Fernández, F.J., 2013. "Analysis of potential energy, economic and environmental savings in residential buildings: Solar collectors combined with microturbines," Applied Energy, Elsevier, vol. 104(C), pages 128-136.
    4. Rezaie, Behnaz & Rosen, Marc A., 2012. "District heating and cooling: Review of technology and potential enhancements," Applied Energy, Elsevier, vol. 93(C), pages 2-10.
    5. Manfren, Massimiliano & Caputo, Paola & Costa, Gaia, 2011. "Paradigm shift in urban energy systems through distributed generation: Methods and models," Applied Energy, Elsevier, vol. 88(4), pages 1032-1048, April.
    6. Al-Alili, A. & Hwang, Y. & Radermacher, R. & Kubo, I., 2012. "A high efficiency solar air conditioner using concentrating photovoltaic/thermal collectors," Applied Energy, Elsevier, vol. 93(C), pages 138-147.
    7. Niemi, R. & Mikkola, J. & Lund, P.D., 2012. "Urban energy systems with smart multi-carrier energy networks and renewable energy generation," Renewable Energy, Elsevier, vol. 48(C), pages 524-536.
    8. Mondol, Jayanta Deb & Yohanis, Yigzaw G & Norton, Brian, 2009. "Optimising the economic viability of grid-connected photovoltaic systems," Applied Energy, Elsevier, vol. 86(7-8), pages 985-999, July.
    9. Hamed, Mouna & Fellah, Ali & Ben Brahim, Ammar, 2012. "Optimization of a solar driven absorption refrigerator in the transient regime," Applied Energy, Elsevier, vol. 92(C), pages 714-724.
    10. Perera, A.T.D. & Attalage, R.A. & Perera, K.K.C.K. & Dassanayake, V.P.C., 2013. "A hybrid tool to combine multi-objective optimization and multi-criterion decision making in designing standalone hybrid energy systems," Applied Energy, Elsevier, vol. 107(C), pages 412-425.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yilmaz, Saban & Binici, Hanifi & Ozcalik, Hasan Riza, 2016. "Energy supply in a green school via a photovoltaic-thermal power system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 713-720.
    2. Allegrini, Jonas & Orehounig, Kristina & Mavromatidis, Georgios & Ruesch, Florian & Dorer, Viktor & Evins, Ralph, 2015. "A review of modelling approaches and tools for the simulation of district-scale energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1391-1404.
    3. Sayegh, M.A. & Danielewicz, J. & Nannou, T. & Miniewicz, M. & Jadwiszczak, P. & Piekarska, K. & Jouhara, H., 2017. "Trends of European research and development in district heating technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 1183-1192.
    4. Aste, Niccolò & Del Pero, Claudio & Leonforte, Fabrizio & Manfren, Massimiliano, 2013. "A simplified model for the estimation of energy production of PV systems," Energy, Elsevier, vol. 59(C), pages 503-512.
    5. Karni Siraganyan & Amarasinghage Tharindu Dasun Perera & Jean-Louis Scartezzini & Dasaraden Mauree, 2019. "Eco-Sim: A Parametric Tool to Evaluate the Environmental and Economic Feasibility of Decentralized Energy Systems," Energies, MDPI, vol. 12(5), pages 1-22, February.
    6. Pandey, A.K. & Tyagi, V.V. & Selvaraj, Jeyraj A/L & Rahim, N.A. & Tyagi, S.K., 2016. "Recent advances in solar photovoltaic systems for emerging trends and advanced applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 859-884.
    7. Prebeg, Pero & Gasparovic, Goran & Krajacic, Goran & Duic, Neven, 2016. "Long-term energy planning of Croatian power system using multi-objective optimization with focus on renewable energy and integration of electric vehicles," Applied Energy, Elsevier, vol. 184(C), pages 1493-1507.
    8. Inayat, Abrar & Raza, Mohsin, 2019. "District cooling system via renewable energy sources: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 360-373.
    9. Perera, A.T.D. & Kamalaruban, Parameswaran, 2021. "Applications of reinforcement learning in energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    10. Sharifi, Ayyoob & Yamagata, Yoshiki, 2016. "Principles and criteria for assessing urban energy resilience: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1654-1677.
    11. del Amo, Alejandro & Martínez-Gracia, Amaya & Bayod-Rújula, Angel A. & Antoñanzas, Javier, 2017. "An innovative urban energy system constituted by a photovoltaic/thermal hybrid solar installation: Design, simulation and monitoring," Applied Energy, Elsevier, vol. 186(P2), pages 140-151.
    12. Ma, Weiwu & Xue, Xinpei & Liu, Gang, 2018. "Techno-economic evaluation for hybrid renewable energy system: Application and merits," Energy, Elsevier, vol. 159(C), pages 385-409.
    13. Kachirayil, Febin & Weinand, Jann Michael & Scheller, Fabian & McKenna, Russell, 2022. "Reviewing local and integrated energy system models: insights into flexibility and robustness challenges," Applied Energy, Elsevier, vol. 324(C).
    14. Chua, K.J. & Chou, S.K. & Yang, W.M. & Yan, J., 2013. "Achieving better energy-efficient air conditioning – A review of technologies and strategies," Applied Energy, Elsevier, vol. 104(C), pages 87-104.
    15. Best, Robert E. & Flager, Forest & Lepech, Michael D., 2015. "Modeling and optimization of building mix and energy supply technology for urban districts," Applied Energy, Elsevier, vol. 159(C), pages 161-177.
    16. Villa-Arrieta, Manuel & Sumper, Andreas, 2018. "A model for an economic evaluation of energy systems using TRNSYS," Applied Energy, Elsevier, vol. 215(C), pages 765-777.
    17. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    18. Persson, Urban & Wiechers, Eva & Möller, Bernd & Werner, Sven, 2019. "Heat Roadmap Europe: Heat distribution costs," Energy, Elsevier, vol. 176(C), pages 604-622.
    19. Arsovski Slobodan & Kwiatkowski Michał & Lewandowska Aleksandra & Peshevska Dimitrinka Jordanova & Sofeska Emilija & Dymitrow Mirek, 2018. "Can urban environmental problems be overcome? The case of Skopje–world’s most polluted city," Bulletin of Geography. Socio-economic Series, Sciendo, vol. 40(40), pages 17-39, June.
    20. Fabien Marty & Sylvain Serra & Sabine Sochard & Jean-Michel Reneaume, 2019. "Exergy Analysis and Optimization of a Combined Heat and Power Geothermal Plant," Energies, MDPI, vol. 12(6), pages 1-22, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:113:y:2014:i:c:p:230-247. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.