IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i2p209-d90084.html
   My bibliography  Save this article

Peaking China’s CO 2 Emissions: Trends to 2030 and Mitigation Potential

Author

Listed:
  • Qiang Liu

    (National Center for Climate Change Strategy and International Cooperation, Beijing 100038, China)

  • Alun Gu

    (Institute of Energy, Environment and Economy, Tsinghua University, Beijing 100084, China)

  • Fei Teng

    (Institute of Energy, Environment and Economy, Tsinghua University, Beijing 100084, China)

  • Ranping Song

    (World Resource Institute, Washington, DC 20002, USA)

  • Yi Chen

    (National Center for Climate Change Strategy and International Cooperation, Beijing 100038, China)

Abstract

China has submitted its nationally determined contribution to peak its energy-related emissions around 2030. To understand how China might develop its economy while controlling CO 2 emissions, this study surveys a number of recent modeling scenarios that project the country’s economic growth, energy mix, and associated emissions until 2050. Our analysis suggests that China’s CO 2 emissions will continue to grow until 2040 or 2050 and will approximately double their 2010 level without additional policy intervention. The alternative scenario, however, suggests that peaking CO 2 emissions around 2030 requires the emission growth rate to be reduced by 2% below the reference level. This step would result in a plateau in China’s emissions from 2020 to 2030. This paper also proposed a deep de-carbonization pathway for China that is consistent with China’s goal of peaking emissions by around 2030, which can best be achieved through a combination of improvements in energy and carbon intensities. Our analysis also indicated that the potential for energy intensity decline will be limited over time. Thus, the peaking will be largely dependent on the share of non-fossil fuel energy in primary energy consumption.

Suggested Citation

  • Qiang Liu & Alun Gu & Fei Teng & Ranping Song & Yi Chen, 2017. "Peaking China’s CO 2 Emissions: Trends to 2030 and Mitigation Potential," Energies, MDPI, vol. 10(2), pages 1-22, February.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:2:p:209-:d:90084
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/2/209/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/2/209/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Maximilian Auffhammer & Ralf Steinhauser, 2007. "The Future Trajectory Of U.S. Co2 Emissions: The Role Of State Vs. Aggregate Information," Journal of Regional Science, Wiley Blackwell, vol. 47(1), pages 47-61, February.
    2. Akimoto, Keigo & Tomoda, Toshimasa & Fujii, Yasumasa & Yamaji, Kenji, 2004. "Assessment of global warming mitigation options with integrated assessment model DNE21," Energy Economics, Elsevier, vol. 26(4), pages 635-653, July.
    3. World Bank & the People’s Republic of China Development Research Center of the State Council, 2013. "China 2030 : Building a Modern, Harmonious, and Creative Society," World Bank Publications - Books, The World Bank Group, number 12925, December.
    4. Kriegler, Elmar & Riahi, Keywan & Bauer, Nico & Schwanitz, Valeria Jana & Petermann, Nils & Bosetti, Valentina & Marcucci, Adriana & Otto, Sander & Paroussos, Leonidas & Rao, Shilpa & Arroyo Currás, T, 2015. "Making or breaking climate targets: The AMPERE study on staged accession scenarios for climate policy," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 24-44.
    5. Geoffrey Blanford & Elmar Kriegler & Massimo Tavoni, 2014. "Harmonization vs. fragmentation: overview of climate policy scenarios in EMF27," Climatic Change, Springer, vol. 123(3), pages 383-396, April.
    6. Zhu Liu & Dabo Guan & Wei Wei & Steven J. Davis & Philippe Ciais & Jin Bai & Shushi Peng & Qiang Zhang & Klaus Hubacek & Gregg Marland & Robert J. Andres & Douglas Crawford-Brown & Jintai Lin & Hongya, 2015. "Reduced carbon emission estimates from fossil fuel combustion and cement production in China," Nature, Nature, vol. 524(7565), pages 335-338, August.
    7. Chris Bataille & Henri Waisman & Michel Colombier & Laura Segafredo & Jim Williams & Frank Jotzo, 2016. "The need for national deep decarbonization pathways for effective climate policy," Climate Policy, Taylor & Francis Journals, vol. 16(sup1), pages 7-26, June.
    8. Burnett, J. Wesley & Bergstrom, John C. & Dorfman, Jeffrey H., 2013. "A spatial panel data approach to estimating U.S. state-level energy emissions," Energy Economics, Elsevier, vol. 40(C), pages 396-404.
    9. Burnett, J. Wesley & Bergstrom, John C. & Wetzstein, Michael E., 2013. "Carbon dioxide emissions and economic growth in the U.S," Journal of Policy Modeling, Elsevier, vol. 35(6), pages 1014-1028.
    10. Jon Nelson & Peter Kennedy, 2009. "The Use (and Abuse) of Meta-Analysis in Environmental and Natural Resource Economics: An Assessment," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 42(3), pages 345-377, March.
    11. Chen, Wenying & Wu, Zongxin & He, Jiankun & Gao, Pengfei & Xu, Shaofeng, 2007. "Carbon emission control strategies for China: A comparative study with partial and general equilibrium versions of the China MARKAL model," Energy, Elsevier, vol. 32(1), pages 59-72.
    12. Clarke, Leon & Krey, Volker & Weyant, John & Chaturvedi, Vaibhav, 2012. "Regional energy system variation in global models: Results from the Asian Modeling Exercise scenarios," Energy Economics, Elsevier, vol. 34(S3), pages 293-305.
    13. T. D. Stanley, 2001. "Wheat from Chaff: Meta-analysis as Quantitative Literature Review," Journal of Economic Perspectives, American Economic Association, vol. 15(3), pages 131-150, Summer.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ameyaw, Bismark & Yao, Li & Oppong, Amos & Agyeman, Joy Korang, 2019. "Investigating, forecasting and proposing emission mitigation pathways for CO2 emissions from fossil fuel combustion only: A case study of selected countries," Energy Policy, Elsevier, vol. 130(C), pages 7-21.
    2. Lu, W.T. & Dai, C. & Fu, Z.H. & Liang, Z.Y. & Guo, H.C., 2018. "An interval-fuzzy possibilistic programming model to optimize China energy management system with CO2 emission constraint," Energy, Elsevier, vol. 142(C), pages 1023-1039.
    3. Duan, Hongbo & Mo, Jianlei & Fan, Ying & Wang, Shouyang, 2018. "Achieving China's energy and climate policy targets in 2030 under multiple uncertainties," Energy Economics, Elsevier, vol. 70(C), pages 45-60.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. William Nordhaus, 2018. "Evolution of modeling of the economics of global warming: changes in the DICE model, 1992–2017," Climatic Change, Springer, vol. 148(4), pages 623-640, June.
    2. Kriegler, Elmar & Petermann, Nils & Krey, Volker & Schwanitz, Valeria Jana & Luderer, Gunnar & Ashina, Shuichi & Bosetti, Valentina & Eom, Jiyong & Kitous, Alban & Méjean, Aurélie & Paroussos, Leonida, 2015. "Diagnostic indicators for integrated assessment models of climate policy," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 45-61.
    3. Haider Mahmood, 2020. "CO2 Emissions, Financial Development, Trade, and Income in North America: A Spatial Panel Data Approach," SAGE Open, , vol. 10(4), pages 21582440209, October.
    4. Havranek, Tomas & Irsova, Zuzana, 2011. "Estimating vertical spillovers from FDI: Why results vary and what the true effect is," Journal of International Economics, Elsevier, vol. 85(2), pages 234-244.
    5. Audoly, Richard & Vogt-Schilb, Adrien & Guivarch, Céline & Pfeiffer, Alexander, 2018. "Pathways toward zero-carbon electricity required for climate stabilization," Applied Energy, Elsevier, vol. 225(C), pages 884-901.
    6. Neves, Pedro Cunha & Afonso, Oscar & Silva, Diana & Sochirca, Elena, 2021. "The link between intellectual property rights, innovation, and growth: A meta-analysis," Economic Modelling, Elsevier, vol. 97(C), pages 196-209.
    7. Marek Rusnak & Tomas Havranek & Roman Horvath, 2013. "How to Solve the Price Puzzle? A Meta‐Analysis," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 45(1), pages 37-70, February.
    8. Tomas Kucera, 2020. "Are Employment Effects of Minimum Wage the Same Across the EU? A Meta-Regression Analysis," Working Papers IES 2020/2, Charles University Prague, Faculty of Social Sciences, Institute of Economic Studies, revised Jan 2020.
    9. David I. Stern, 2012. "Interfuel Substitution: A Meta‐Analysis," Journal of Economic Surveys, Wiley Blackwell, vol. 26(2), pages 307-331, April.
    10. Fragkos, Panagiotis & Kouvaritakis, Nikos, 2018. "Model-based analysis of Intended Nationally Determined Contributions and 2 °C pathways for major economies," Energy, Elsevier, vol. 160(C), pages 965-978.
    11. Choumert, Johanna & Combes Motel, Pascale & Dakpo, Hervé K., 2013. "Is the Environmental Kuznets Curve for deforestation a threatened theory? A meta-analysis of the literature," Ecological Economics, Elsevier, vol. 90(C), pages 19-28.
    12. Guivarch, Céline & Monjon, Stéphanie, 2017. "Identifying the main uncertainty drivers of energy security in a low-carbon world: The case of Europe," Energy Economics, Elsevier, vol. 64(C), pages 530-541.
    13. David Guerreiro, 2010. "Une méta-analyse de l'impact des subventions sur le prix mondial du coton," Economie & Prévision, La Documentation Française, vol. 0(4), pages 111-125.
    14. Branger, Frédéric & Quirion, Philippe, 2014. "Would border carbon adjustments prevent carbon leakage and heavy industry competitiveness losses? Insights from a meta-analysis of recent economic studies," Ecological Economics, Elsevier, vol. 99(C), pages 29-39.
    15. Sundt, Swantje & Rehdanz, Katrin, 2015. "Consumers' willingness to pay for green electricity: A meta-analysis of the literature," Energy Economics, Elsevier, vol. 51(C), pages 1-8.
    16. Markus Hang & Jerome Geyer‐Klingeberg & Andreas Rathgeber & Stefan Stöckl, 2018. "Economic Development Matters: A Meta‐Regression Analysis on the Relation between Environmental Management and Financial Performance," Journal of Industrial Ecology, Yale University, vol. 22(4), pages 720-744, August.
    17. Xunzhang, Pan & Wenying, Chen & Clarke, Leon E. & Lining, Wang & Guannan, Liu, 2017. "China's energy system transformation towards the 2°C goal: Implications of different effort-sharing principles," Energy Policy, Elsevier, vol. 103(C), pages 116-126.
    18. Jonathan Jones, 2017. "Agglomeration economies and the location of foreign direct investment: A meta-analysis," Journal of Regional Science, Wiley Blackwell, vol. 57(5), pages 731-757, November.
    19. Havranek, Tomas & Irsova, Zuzana & Janda, Karel, 2012. "Demand for gasoline is more price-inelastic than commonly thought," Energy Economics, Elsevier, vol. 34(1), pages 201-207.
    20. J. Wesley Burnett & Xueting Zhao, 2014. "Forecasting U.S. State-Level Carbon Dioxide Emissions," The Review of Regional Studies, Southern Regional Science Association, vol. 44(3), pages 223-240, Winter.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:2:p:209-:d:90084. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.