IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i12p1971-d120441.html
   My bibliography  Save this article

A Novel Electricity Transaction Mode of Microgrids Based on Blockchain and Continuous Double Auction

Author

Listed:
  • Jian Wang

    (State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing 400044, China)

  • Qianggang Wang

    (State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing 400044, China)

  • Niancheng Zhou

    (State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing 400044, China)

  • Yuan Chi

    (School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore)

Abstract

The installed capacity of distributed generation (DG) based on renewable energy sources has increased continuously in power systems, and its market-oriented transaction is imperative. However, traditional transaction management based on centralized organizations has many disadvantages, such as high operation cost, low transparency, and potential risk of transaction data modification. Therefore, a decentralized electricity transaction mode for microgrids is proposed in this study based on blockchain and continuous double auction (CDA) mechanism. A buyer and seller initially complete the transaction matching in the CDA market. In view of the frequent price fluctuation in the CDA market, an adaptive aggressiveness strategy is used to adjust the quotation timely according to market changes. DG and consumer exchange digital certificate of power and expenditure on the blockchain system and the interests of consumers are then guaranteed by multi-signature when DG cannot generate power due to failure or other reasons. The digital certification of electricity assets is replaced by the sequence number with specific tags in the transaction script, and the size of digital certification can be adjusted according to transaction energy quantity. Finally, the feasibility of market mechanism through specific microgrid case and settlement process is also provided.

Suggested Citation

  • Jian Wang & Qianggang Wang & Niancheng Zhou & Yuan Chi, 2017. "A Novel Electricity Transaction Mode of Microgrids Based on Blockchain and Continuous Double Auction," Energies, MDPI, vol. 10(12), pages 1-22, November.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:12:p:1971-:d:120441
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/12/1971/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/12/1971/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shen, Bo & Han, Yafeng & Price, Lynn & Lu, Hongyou & Liu, Manzhi, 2017. "Techno-economic evaluation of strategies for addressing energy and environmental challenges of industrial boilers in China," Energy, Elsevier, vol. 118(C), pages 526-533.
    2. Sikorski, Janusz J. & Haughton, Joy & Kraft, Markus, 2017. "Blockchain technology in the chemical industry: Machine-to-machine electricity market," Applied Energy, Elsevier, vol. 195(C), pages 234-246.
    3. James Nicolaisen & Valentin Petrov & Leigh Tesfatsion, 2000. "Market Power and Efficiency in a Computational Electricity Market with Discriminatory Double-Auction Pricing," Computational Economics 0004005, University Library of Munich, Germany.
    4. Nicolas Houy, 2014. "It will cost you nothing to "kill" a proof-of-stake crypto-currency," Economics Bulletin, AccessEcon, vol. 34(2), pages 1038-1044.
    5. Lv, Tianguang & Ai, Qian, 2016. "Interactive energy management of networked microgrids-based active distribution system considering large-scale integration of renewable energy resources," Applied Energy, Elsevier, vol. 163(C), pages 408-422.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mengelkamp, Esther & Gärttner, Johannes & Rock, Kerstin & Kessler, Scott & Orsini, Lawrence & Weinhardt, Christof, 2018. "Designing microgrid energy markets," Applied Energy, Elsevier, vol. 210(C), pages 870-880.
    2. Guido C. Guerrero-Liquet & Santiago Oviedo-Casado & J. M. Sánchez-Lozano & M. Socorro García-Cascales & Javier Prior & Antonio Urbina, 2018. "Determination of the Optimal Size of Photovoltaic Systems by Using Multi-Criteria Decision-Making Methods," Sustainability, MDPI, vol. 10(12), pages 1-18, December.
    3. Balint, T. & Lamperti, F. & Mandel, A. & Napoletano, M. & Roventini, A. & Sapio, A., 2017. "Complexity and the Economics of Climate Change: A Survey and a Look Forward," Ecological Economics, Elsevier, vol. 138(C), pages 252-265.
    4. Liu, Beibei & He, Pan & Zhang, Bing & Bi, Jun, 2012. "Impacts of alternative allowance allocation methods under a cap-and-trade program in power sector," Energy Policy, Elsevier, vol. 47(C), pages 405-415.
    5. Nicolas Audet & Toni Gravelle & Jing Yang, 2002. "Alternative Trading Systems: Does One Shoe Fit All?," Staff Working Papers 02-33, Bank of Canada.
    6. Hao, Ran & Lu, Tianguang & Ai, Qian & Wang, Zhe & Wang, Xiaolong, 2020. "Distributed online learning and dynamic robust standby dispatch for networked microgrids," Applied Energy, Elsevier, vol. 274(C).
    7. Sensfuß, Frank & Ragwitz, Mario & Genoese, Massimo & Möst, Dominik, 2007. "Agent-based simulation of electricity markets: a literature review," Working Papers "Sustainability and Innovation" S5/2007, Fraunhofer Institute for Systems and Innovation Research (ISI).
    8. Somani, Abhishek, 2012. "Financial risk management and market performance in restructured electric power markets: Theoretical and agent-based test bed studies," ISU General Staff Papers 201201010800003479, Iowa State University, Department of Economics.
    9. Deddy Koesrindartoto, 2003. "Treasury Auctions, Uniform or Discriminatory?: An Agent-based Approach," Computing in Economics and Finance 2003 241, Society for Computational Economics.
    10. Esmaeili Aliabadi, Danial & Kaya, Murat & Sahin, Guvenc, 2017. "Competition, risk and learning in electricity markets: An agent-based simulation study," Applied Energy, Elsevier, vol. 195(C), pages 1000-1011.
    11. Ning Wang & Weisheng Xu & Weihui Shao & Zhiyu Xu, 2019. "A Q-Cube Framework of Reinforcement Learning Algorithm for Continuous Double Auction among Microgrids," Energies, MDPI, vol. 12(15), pages 1-26, July.
    12. Atakelty Hailu & Sophie Thoyer, 2006. "Multi-unit auction format design," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 1(2), pages 129-146, November.
    13. Tang, Ling & Wu, Jiaqian & Yu, Lean & Bao, Qin, 2017. "Carbon allowance auction design of China's emissions trading scheme: A multi-agent-based approach," Energy Policy, Elsevier, vol. 102(C), pages 30-40.
    14. Tandon, Anushree & Kaur, Puneet & Mäntymäki, Matti & Dhir, Amandeep, 2021. "Blockchain applications in management: A bibliometric analysis and literature review," Technological Forecasting and Social Change, Elsevier, vol. 166(C).
    15. Kinnon, Michael Mac & Razeghi, Ghazal & Samuelsen, Scott, 2021. "The role of fuel cells in port microgrids to support sustainable goods movement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    16. Li, Hongyan & Tesfatsion, Leigh, 2012. "Co-learning patterns as emergent market phenomena: An electricity market illustration," Journal of Economic Behavior & Organization, Elsevier, vol. 82(2), pages 395-419.
    17. Byeongtae Ahn, 2022. "Implementation and Early Adoption of an Ethereum-Based Electronic Voting System for the Prevention of Fraudulent Voting," Sustainability, MDPI, vol. 14(5), pages 1-16, March.
    18. Silvano Cincotti & Marco Raberto & Andrea Teglio, 2022. "Why do we need agent-based macroeconomics?," Review of Evolutionary Political Economy, Springer, vol. 3(1), pages 5-29, April.
    19. Yang, Ting & Pen, Haibo & Wang, Dan & Wang, Zhaoxia, 2016. "Harmonic analysis in integrated energy system based on compressed sensing," Applied Energy, Elsevier, vol. 165(C), pages 583-591.
    20. Leigh Tesfatsion, 2017. "Elements of Dynamic Economic Modeling: Presentation and Analysis," Eastern Economic Journal, Palgrave Macmillan;Eastern Economic Association, vol. 43(2), pages 192-216, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:12:p:1971-:d:120441. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.