IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i11p1837-d118324.html
   My bibliography  Save this article

Kiwi Clear‐Cut: First Evaluation of Recovered Biomass for Energy Production

Author

Listed:
  • Marco Manzone

    (Department of Agricultural, Forest and Food Sciences, University of Torino, Largo Paolo Braccini, 2, 10095 Grugliasco, Italy)

  • Fabrizio Gioelli

    (Department of Agricultural, Forest and Food Sciences, University of Torino, Largo Paolo Braccini, 2, 10095 Grugliasco, Italy)

  • Paolo Balsari

    (Department of Agricultural, Forest and Food Sciences, University of Torino, Largo Paolo Braccini, 2, 10095 Grugliasco, Italy)

Abstract

Among the various types of agricultural waste, significant amounts of energy can be obtained from woodchips derived from comminuted pruning residues. This study aimed to assess the feasibility of using kiwi orchard clear-cut biomass for energy production. The field trial was conducted in a commercial kiwi ( Actinidia chinensis ) orchard located in Northwest Italy. We evaluated the biomass yield, woodchip quality, energy consumption, and economic sustainability of this practice. Processed data determined the available biomass to be 20.6 tonnes dry matter ha − 1 . Woodchip analysis showed a biomass moisture content of 53% and a relatively low heating value of about 7.5 MJ·kg − 1 . Furthermore, the average ash content was 2.4%. Production cost was 99.6 €·t − 1 dry matter, which was slightly less than the market price of 100 €·t − 1 dry matter for woodchips. In summary, kiwi clear-cut recovered biomass may be a valid alternative biomass source.

Suggested Citation

  • Marco Manzone & Fabrizio Gioelli & Paolo Balsari, 2017. "Kiwi Clear‐Cut: First Evaluation of Recovered Biomass for Energy Production," Energies, MDPI, vol. 10(11), pages 1-12, November.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:11:p:1837-:d:118324
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/11/1837/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/11/1837/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lantian Ren & Kara Cafferty & Mohammad Roni & Jacob Jacobson & Guanghui Xie & Leslie Ovard & Christopher Wright, 2015. "Analyzing and Comparing Biomass Feedstock Supply Systems in China: Corn Stover and Sweet Sorghum Case Studies," Energies, MDPI, vol. 8(6), pages 1-21, June.
    2. Rosso, Laura & Facciotto, Gianni & Bergante, Sara & Vietto, Lorenzo & Nervo, Giuseppe, 2013. "Selection and testing of Populus alba and Salix spp. as bioenergy feedstock: Preliminary results," Applied Energy, Elsevier, vol. 102(C), pages 87-92.
    3. Manzone, Marco, 2015. "Energy consumption and CO2 analysis of different types of chippers used in wood biomass plantations," Applied Energy, Elsevier, vol. 156(C), pages 686-692.
    4. Anoop Singh & Surajbhan Sevda & Ibrahim M. Abu Reesh & Karolien Vanbroekhoven & Dheeraj Rathore & Deepak Pant, 2015. "Biohydrogen Production from Lignocellulosic Biomass: Technology and Sustainability," Energies, MDPI, vol. 8(11), pages 1-19, November.
    5. Ulises Flores Hernández & Dirk Jaeger & Jorge Islas Samperio, 2017. "Bioenergy Potential and Utilization Costs for the Supply of Forest Woody Biomass for Energetic Use at a Regional Scale in Mexico," Energies, MDPI, vol. 10(8), pages 1-25, August.
    6. Johanna Gaitán-Alvarez & Roger Moya & Allen Puente-Urbina & Ana Rodriguez-Zuñiga, 2017. "Physical and Compression Properties of Pellets Manufactured with the Biomass of Five Woody Tropical Species of Costa Rica Torrefied at Different Temperatures and Times," Energies, MDPI, vol. 10(8), pages 1-17, August.
    7. Xing Yang & Hailong Wang & Peter James Strong & Song Xu & Shujuan Liu & Kouping Lu & Kuichuan Sheng & Jia Guo & Lei Che & Lizhi He & Yong Sik Ok & Guodong Yuan & Ying Shen & Xin Chen, 2017. "Thermal Properties of Biochars Derived from Waste Biomass Generated by Agricultural and Forestry Sectors," Energies, MDPI, vol. 10(4), pages 1-12, April.
    8. Casal, M.D. & Gil, M.V. & Pevida, C. & Rubiera, F. & Pis, J.J., 2010. "Influence of storage time on the quality and combustion behaviour of pine woodchips," Energy, Elsevier, vol. 35(7), pages 3066-3071.
    9. Velázquez-Martí, B. & Fernández-González, E. & López-Cortés, I. & Salazar-Hernández, D.M., 2011. "Quantification of the residual biomass obtained from pruning of trees in Mediterranean almond groves," Renewable Energy, Elsevier, vol. 36(2), pages 621-626.
    10. Fengli Zhang & Dana M. Johnson & Jinjiang Wang, 2015. "Life-Cycle Energy and GHG Emissions of Forest Biomass Harvest and Transport for Biofuel Production in Michigan," Energies, MDPI, vol. 8(4), pages 1-14, April.
    11. Franco Cotana & Gianluca Cavalaglio & Valentina Coccia & Alessandro Petrozzi, 2016. "Energy Opportunities from Lignocellulosic Biomass for a Biorefinery Case Study," Energies, MDPI, vol. 9(9), pages 1-10, September.
    12. Bernetti, Iacopo & Fagarazzi, Claudio & Fratini, Roberto, 2004. "A methodology to anaylse the potential development of biomass-energy sector: an application in Tuscany," Forest Policy and Economics, Elsevier, vol. 6(3-4), pages 415-432, June.
    13. Christina Moulogianni & Thomas Bournaris, 2017. "Biomass Production from Crops Residues: Ranking of Agro-Energy Regions," Energies, MDPI, vol. 10(7), pages 1-12, July.
    14. Sunil Thapa & Prakashbhai R. Bhoi & Ajay Kumar & Raymond L. Huhnke, 2017. "Effects of Syngas Cooling and Biomass Filter Medium on Tar Removal," Energies, MDPI, vol. 10(3), pages 1-12, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arkadiusz Dyjakon, 2019. "The Influence of Apple Orchard Management on Energy Performance and Pruned Biomass Harvesting for Energetic Applications," Energies, MDPI, vol. 12(4), pages 1-16, February.
    2. Marco Manzone & Fabrizio Gioelli & Paolo Balsari, 2019. "Effects of Different Storage Techniques on Round-Baled Orchard-Pruning Residues," Energies, MDPI, vol. 12(6), pages 1-10, March.
    3. Arkadiusz Dyjakon, 2018. "The Influence of the Use of Windrowers in Baler Machinery on the Energy Balance during Pruned Biomass Harvesting in the Apple Orchard," Energies, MDPI, vol. 11(11), pages 1-15, November.
    4. Monika Słupska & Arkadiusz Dyjakon & Roman Stopa, 2019. "Determination of Strength Properties of Energy Plants on the Example of Miscanthus × Giganteus , Rosa Multiflora and Salix Viminalis," Energies, MDPI, vol. 12(19), pages 1-19, September.
    5. Arkadiusz Dyjakon, 2018. "Harvesting and Baling of Pruned Biomass in Apple Orchards for Energy Production," Energies, MDPI, vol. 11(7), pages 1-14, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marco Manzone & Fabrizio Gioelli & Paolo Balsari, 2019. "Effects of Different Storage Techniques on Round-Baled Orchard-Pruning Residues," Energies, MDPI, vol. 12(6), pages 1-10, March.
    2. Giuseppe Maggiotto & Gianpiero Colangelo & Marco Milanese & Arturo de Risi, 2023. "Thermochemical Technologies for the Optimization of Olive Wood Biomass Energy Exploitation: A Review," Energies, MDPI, vol. 16(19), pages 1-17, September.
    3. Chico-Santamarta, Leticia & Godwin, Richard John & Chaney, Keith & White, David Richard & Humphries, Andrea Claire, 2013. "On-farm storage of baled and pelletized canola (Brassica napus L.) straw: Variations in the combustion related properties," Energy, Elsevier, vol. 50(C), pages 429-437.
    4. Haji Esmaeili, Seyed Ali & Szmerekovsky, Joseph & Sobhani, Ahmad & Dybing, Alan & Peterson, Tim O., 2020. "Sustainable biomass supply chain network design with biomass switching incentives for first-generation bioethanol producers," Energy Policy, Elsevier, vol. 138(C).
    5. Luigi Pari & Francesco Latterini & Walter Stefanoni, 2020. "Herbaceous Oil Crops, a Review on Mechanical Harvesting State of the Art," Agriculture, MDPI, vol. 10(8), pages 1-25, July.
    6. Xiao He & Anthony K. Lau & Shahab Sokhansanj, 2019. "Effect of Moisture on Gas Emissions from Stored Woody Biomass," Energies, MDPI, vol. 13(1), pages 1-14, December.
    7. Cozzi, Mario & Viccaro, Mauro & Di Napoli, Francesco & Fagarazzi, Claudio & Tirinnanzi, Alessandro & Romano, Severino, 2015. "A spatial analysis model to assess the feasibility of short rotation forestry fertigated with urban wastewater: Basilicata region case study," Agricultural Water Management, Elsevier, vol. 159(C), pages 185-196.
    8. Piotr Wojewódzki & Joanna Lemanowicz & Bozena Debska & Samir A. Haddad & Erika Tobiasova, 2022. "The Application of Biochar from Waste Biomass to Improve Soil Fertility and Soil Enzyme Activity and Increase Carbon Sequestration," Energies, MDPI, vol. 16(1), pages 1-16, December.
    9. Raghava Rao Kommalapati & Iqbal Hossan & Venkata Sai Vamsi Botlaguduru & Hongbo Du & Ziaul Huque, 2018. "Life Cycle Environmental Impact of Biomass Co-Firing with Coal at a Power Plant in the Greater Houston Area," Sustainability, MDPI, vol. 10(7), pages 1-18, June.
    10. Daniele Basso & Elsa Weiss-Hortala & Francesco Patuzzi & Marco Baratieri & Luca Fiori, 2018. "In Deep Analysis on the Behavior of Grape Marc Constituents during Hydrothermal Carbonization," Energies, MDPI, vol. 11(6), pages 1-19, May.
    11. Asma Sattar & Chaudhry Arslan & Changying Ji & Sumiyya Sattar & Irshad Ali Mari & Haroon Rashid & Fariha Ilyas, 2016. "Comparing the Bio-Hydrogen Production Potential of Pretreated Rice Straw Co-Digested with Seeded Sludge Using an Anaerobic Bioreactor under Mesophilic Thermophilic Conditions," Energies, MDPI, vol. 9(3), pages 1-14, March.
    12. Manzone, Marco & Calvo, Angela, 2016. "Energy and CO2 analysis of poplar and maize crops for biomass production in north Italy," Renewable Energy, Elsevier, vol. 86(C), pages 675-681.
    13. Nunzio Cardullo & Melania Leanza & Vera Muccilli & Corrado Tringali, 2021. "Valorization of Agri-Food Waste from Pistachio Hard Shells: Extraction of Polyphenols as Natural Antioxidants," Resources, MDPI, vol. 10(5), pages 1-17, May.
    14. Kinab, Elias & Khoury, Georges, 2015. "Management of olive solid waste in Lebanon: From mill to stove," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 209-216.
    15. Arnob Das & Susmita Datta Peu, 2022. "A Comprehensive Review on Recent Advancements in Thermochemical Processes for Clean Hydrogen Production to Decarbonize the Energy Sector," Sustainability, MDPI, vol. 14(18), pages 1-42, September.
    16. Francisco J. Ruiz-Rodríguez & Jesús C. Hernández & Francisco Jurado, 2017. "Probabilistic Load-Flow Analysis of Biomass-Fuelled Gas Engines with Electrical Vehicles in Distribution Systems," Energies, MDPI, vol. 10(10), pages 1-23, October.
    17. Natarianto Indrawan & Betty Simkins & Ajay Kumar & Raymond L. Huhnke, 2020. "Economics of Distributed Power Generation via Gasification of Biomass and Municipal Solid Waste," Energies, MDPI, vol. 13(14), pages 1-18, July.
    18. Sara Rajabi Hamedani & Mauro Villarini & Andrea Colantoni & Michele Moretti & Enrico Bocci, 2018. "Life Cycle Performance of Hydrogen Production via Agro-Industrial Residue Gasification—A Small Scale Power Plant Study," Energies, MDPI, vol. 11(3), pages 1-19, March.
    19. Efthymios Rodias & Remigio Berruto & Dionysis Bochtis & Patrizia Busato & Alessandro Sopegno, 2017. "A Computational Tool for Comparative Energy Cost Analysis of Multiple-Crop Production Systems," Energies, MDPI, vol. 10(7), pages 1-15, June.
    20. Mauro Villarini & Vera Marcantonio & Andrea Colantoni & Enrico Bocci, 2019. "Sensitivity Analysis of Different Parameters on the Performance of a CHP Internal Combustion Engine System Fed by a Biomass Waste Gasifier," Energies, MDPI, vol. 12(4), pages 1-21, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:11:p:1837-:d:118324. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.