IDEAS home Printed from https://ideas.repec.org/a/gam/jecnmx/v4y2016i2p20-d66662.html
   My bibliography  Save this article

Recovering the Most Entropic Copulas from Preliminary Knowledge of Dependence

Author

Listed:
  • Ba Chu

    (Department of Economics, Carleton University, B-857 Loeb Building, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada)

  • Stephen Satchell

    (Trinity College, University of Cambridge, Cambridge CB2 1TQ, UK
    The University of Sydney Business School, New South Wales NSW 2006, Australia)

Abstract

This paper provides a new approach to recover relative entropy measures of contemporaneous dependence from limited information by constructing the most entropic copula (MEC) and its canonical form, namely the most entropic canonical copula (MECC). The MECC can effectively be obtained by maximizing Shannon entropy to yield a proper copula such that known dependence structures of data (e.g., measures of association) are matched to their empirical counterparts. In fact the problem of maximizing the entropy of copulas is the dual to the problem of minimizing the Kullback-Leibler cross entropy (KLCE) of joint probability densities when the marginal probability densities are fixed. Our simulation study shows that the proposed MEC estimator can potentially outperform many other copula estimators in finite samples.

Suggested Citation

  • Ba Chu & Stephen Satchell, 2016. "Recovering the Most Entropic Copulas from Preliminary Knowledge of Dependence," Econometrics, MDPI, vol. 4(2), pages 1-21, March.
  • Handle: RePEc:gam:jecnmx:v:4:y:2016:i:2:p:20-:d:66662
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2225-1146/4/2/20/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2225-1146/4/2/20/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zellner, Arnold & Highfield, Richard A., 1988. "Calculation of maximum entropy distributions and approximation of marginalposterior distributions," Journal of Econometrics, Elsevier, vol. 37(2), pages 195-209, February.
    2. Andrew J. Patton, 2004. "On the Out-of-Sample Importance of Skewness and Asymmetric Dependence for Asset Allocation," Journal of Financial Econometrics, Oxford University Press, vol. 2(1), pages 130-168.
    3. Alexander Veremyev & Peter Tsyurmasto & Stan Uryasev & R. Rockafellar, 2014. "Calibrating probability distributions with convex-concave-convex functions: application to CDO pricing," Computational Management Science, Springer, vol. 11(4), pages 341-364, October.
    4. Wu, Ximing, 2003. "Calculation of maximum entropy densities with application to income distribution," Journal of Econometrics, Elsevier, vol. 115(2), pages 347-354, August.
    5. Golan, Amos & Judge, George G. & Miller, Douglas, 1996. "Maximum Entropy Econometrics," Staff General Research Papers Archive 1488, Iowa State University, Department of Economics.
    6. Chu, Ba, 2011. "Recovering copulas from limited information and an application to asset allocation," Journal of Banking & Finance, Elsevier, vol. 35(7), pages 1824-1842, July.
    7. Lorán Chollete & Andréas Heinen & Alfonso Valdesogo, 2009. "Modeling International Financial Returns with a Multivariate Regime-switching Copula," Journal of Financial Econometrics, Oxford University Press, vol. 7(4), pages 437-480, Fall.
    8. Clive Granger & Jin‐Lung Lin, 1994. "Using The Mutual Information Coefficient To Identify Lags In Nonlinear Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 15(4), pages 371-384, July.
    9. Michael A. H. Dempster & Elena A. Medova & Seung W. Yang, 2007. "Empirical Copulas For Cdo Tranche Pricing Using Relative Entropy," World Scientific Book Chapters, in: Alexander Lipton & Andrew Rennie (ed.), Credit Correlation Life After Copulas, chapter 5, pages 87-109, World Scientific Publishing Co. Pte. Ltd..
    10. Ning, Cathy & Xu, Dinghai & Wirjanto, Tony S., 2015. "Is volatility clustering of asset returns asymmetric?," Journal of Banking & Finance, Elsevier, vol. 52(C), pages 62-76.
    11. Golan, Amos, 2007. "Information and entropy econometrics - volume overview and synthesis," Journal of Econometrics, Elsevier, vol. 138(2), pages 379-387, June.
    12. Rodriguez, Juan Carlos, 2007. "Measuring financial contagion: A Copula approach," Journal of Empirical Finance, Elsevier, vol. 14(3), pages 401-423, June.
    13. Rockinger, Michael & Jondeau, Eric, 2002. "Entropy densities with an application to autoregressive conditional skewness and kurtosis," Journal of Econometrics, Elsevier, vol. 106(1), pages 119-142, January.
    14. Wu, Ximing & Perloff, Jeffrey M., 2007. "GMM estimation of a maximum entropy distribution with interval data," Journal of Econometrics, Elsevier, vol. 138(2), pages 532-546, June.
    15. Miller, Douglas J. & Liu, Wei-han, 2002. "On the recovery of joint distributions from limited information," Journal of Econometrics, Elsevier, vol. 107(1-2), pages 259-274, March.
    16. Golan, Amos, 2002. "Information and Entropy Econometrics--Editor's View," Journal of Econometrics, Elsevier, vol. 107(1-2), pages 1-15, March.
    17. Maasoumi, Esfandiar & Racine, Jeff, 2002. "Entropy and predictability of stock market returns," Journal of Econometrics, Elsevier, vol. 107(1-2), pages 291-312, March.
    18. Michael A. H. Dempster & Elena A. Medova & Seung W. Yang, 2007. "Empirical Copulas For Cdo Tranche Pricing Using Relative Entropy," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 10(04), pages 679-701.
    19. Usta, Ilhan & Kantar, Yeliz Mert, 2011. "On the performance of the flexible maximum entropy distributions within partially adaptive estimation," Computational Statistics & Data Analysis, Elsevier, vol. 55(6), pages 2172-2182, June.
    20. Michael A. H. Dempster & Elena A. Medova & Seung W. Yang, 2007. "Erratum: "Empirical Copulas For Cdo Tranche Pricing Using Relative Entropy"," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 10(07), pages 1255-1260.
    21. Yanqin Fan & Andrew J. Patton, 2014. "Copulas in Econometrics," Annual Review of Economics, Annual Reviews, vol. 6(1), pages 179-200, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chu, Ba, 2011. "Recovering copulas from limited information and an application to asset allocation," Journal of Banking & Finance, Elsevier, vol. 35(7), pages 1824-1842, July.
    2. Alexander Veremyev & Peter Tsyurmasto & Stan Uryasev & R. Rockafellar, 2014. "Calibrating probability distributions with convex-concave-convex functions: application to CDO pricing," Computational Management Science, Springer, vol. 11(4), pages 341-364, October.
    3. Stephen Satchell & Susan Thorp & Oliver Williams, 2012. "Estimating Consumption Plans for Recursive Utility by Maximum Entropy Methods," Research Paper Series 300, Quantitative Finance Research Centre, University of Technology, Sydney.
    4. Wu, Ximing, 2010. "Exponential Series Estimator of multivariate densities," Journal of Econometrics, Elsevier, vol. 156(2), pages 354-366, June.
    5. Małgorzata Doman & Ryszard Doman, 2013. "Dynamic linkages between stock markets: the effects of crises and globalization," Portuguese Economic Journal, Springer;Instituto Superior de Economia e Gestao, vol. 12(2), pages 87-112, August.
    6. Dimic, Nebojsa & Piljak, Vanja & Swinkels, Laurens & Vulanovic, Milos, 2021. "The structure and degree of dependence in government bond markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 74(C).
    7. Wu, Ximing & Perloff, Jeffrey M., 2007. "Information-Theoretic Deconvolution Approximation of Treatment Effect Distribution," Department of Agricultural & Resource Economics, UC Berkeley, Working Paper Series qt6bm6n30x, Department of Agricultural & Resource Economics, UC Berkeley.
    8. Domenico Di Gangi & Fabrizio Lillo & Davide Pirino, 2015. "Assessing systemic risk due to fire sales spillover through maximum entropy network reconstruction," Papers 1509.00607, arXiv.org, revised Jul 2018.
    9. Carol Alexander & Jose Maria Sarabia, 2010. "Endogenizing Model Risk to Quantile Estimates," ICMA Centre Discussion Papers in Finance icma-dp2010-07, Henley Business School, University of Reading.
    10. Yiguo Sun & Thanasis Stengos, 2008. "The absolute health income hypothesis revisited: a semiparametric quantile regression approach," Empirical Economics, Springer, vol. 35(2), pages 395-412, September.
    11. Henryk Gurgul & Robert Syrek, 2010. "Polish stock market and some foreign markets - dependence analysis by regime-switching copulas," Managerial Economics, AGH University of Science and Technology, Faculty of Management, vol. 8, pages 21-39.
    12. repec:ebl:ecbull:v:30:y:2010:i:1:p:587-596 is not listed on IDEAS
    13. Garcia, René & Tsafack, Georges, 2011. "Dependence structure and extreme comovements in international equity and bond markets," Journal of Banking & Finance, Elsevier, vol. 35(8), pages 1954-1970, August.
    14. Thanasis Stengos & Ximing Wu, 2010. "Information-Theoretic Distribution Test with Application to Normality," Econometric Reviews, Taylor & Francis Journals, vol. 29(3), pages 307-329.
    15. Holger Fink & Yulia Klimova & Claudia Czado & Jakob Stober, 2016. "Regime switching vine copula models for global equity and volatility indices," Papers 1604.05598, arXiv.org.
    16. Chollete, Loran & Ning, Cathy, 2009. "The Dependence Structure of Macroeconomic Variables in the US," UiS Working Papers in Economics and Finance 2009/31, University of Stavanger.
    17. Patton, Andrew, 2013. "Copula Methods for Forecasting Multivariate Time Series," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 899-960, Elsevier.
    18. Chollete, Loran & Ning, Cathy, 2012. "Asymmetric Dependence in the US Economy: Application to Money and the Phillips Curve," UiS Working Papers in Economics and Finance 2012/1, University of Stavanger.
    19. Millie Yi Mao & Aman Ullah, 2019. "Information Theoretic Estimation of Econometric Functions," Working Papers 201923, University of California at Riverside, Department of Economics.
    20. Patton, Andrew J., 2012. "A review of copula models for economic time series," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 4-18.
    21. Chollete, Lorán & de la Peña, Victor & Lu, Ching-Chih, 2011. "International diversification: A copula approach," Journal of Banking & Finance, Elsevier, vol. 35(2), pages 403-417, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jecnmx:v:4:y:2016:i:2:p:20-:d:66662. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.