IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v8y2018i4p53-d139411.html
   My bibliography  Save this article

Assessing the Economic Impacts of Pesticide Regulations

Author

Listed:
  • Uwe A. Schneider

    (Research Unit Sustainability and Global Change, Department of Geosciences, Center for Earth System Research and Sustainability, University of Hamburg, 20144 Hamburg, Germany)

  • Livia Rasche

    (Research Unit Sustainability and Global Change, Department of Geosciences, Center for Earth System Research and Sustainability, University of Hamburg, 20144 Hamburg, Germany)

  • Bruce A. McCarl

    (Department of Agricultural Economics, Texas A&M University, College Station, TX 77843-2124, USA)

Abstract

Economic impacts of pesticide regulations are assessed using five alternative methodologies. The regulations include crop supply-enhancing eradication programs and crop supply-decreasing pesticide bans. Alternative assessment methodologies differ regarding assumptions about market price and crop acreage adjustments. Results show that market and producer adjustments substantially impact conclusions about winners and losers from regulations, and estimated welfare effects can differ widely between the different methodologies. For small technological changes such as the hypothetical pendimethalin regulation, farm budgeting and sector modeling yield similar estimates. For more severe technological changes—like the boll weevil eradication program—simple budgeting approaches lead to a substantial bias.

Suggested Citation

  • Uwe A. Schneider & Livia Rasche & Bruce A. McCarl, 2018. "Assessing the Economic Impacts of Pesticide Regulations," Agriculture, MDPI, vol. 8(4), pages 1-13, April.
  • Handle: RePEc:gam:jagris:v:8:y:2018:i:4:p:53-:d:139411
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/8/4/53/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/8/4/53/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Taylor, C. Robert & Penson, John B. & Smith, Edward G. & Knutson, Ronald D., 1991. "Economic Impacts of Chemical Use Reduction on the South," Journal of Agricultural and Applied Economics, Cambridge University Press, vol. 23(1), pages 15-23, July.
    2. Schneider, Uwe A. & McCarl, Bruce A. & Schmid, Erwin, 2007. "Agricultural sector analysis on greenhouse gas mitigation in US agriculture and forestry," Agricultural Systems, Elsevier, vol. 94(2), pages 128-140, May.
    3. Jacquet, Florence & Butault, Jean-Pierre & Guichard, Laurence, 2011. "An economic analysis of the possibility of reducing pesticides in French field crops," Ecological Economics, Elsevier, vol. 70(9), pages 1638-1648, July.
    4. Xiaoguang Chen & Hayri Önal, 2012. "Modeling Agricultural Supply Response Using Mathematical Programming and Crop Mixes," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 94(3), pages 674-686.
    5. Gardner, Bruce L, 1987. "Causes of U.S. Farm Commodity Programs," Journal of Political Economy, University of Chicago Press, vol. 95(2), pages 290-310, April.
    6. Szvetlana Acs & Paul Berentsen & Ruud Huirne & Marcel van Asseldonk, 2009. "Effect of yield and price risk on conversion from conventional to organic farming ," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 53(3), pages 393-411, July.
    7. J. N. Perry & L. G. Firbank & G. T. Champion & S. J. Clark & M. S. Heard & M. J. May & C. Hawes & G. R. Squire & P. Rothery & I. P. Woiwod & J. D. Pidgeon, 2004. "Ban on triazine herbicides likely to reduce but not negate relative benefits of GMHT maize cropping," Nature, Nature, vol. 428(6980), pages 313-316, March.
    8. Taylor, C. Robert & Penson, John B., Jr. & Smith, Edward G. & Knutson, Ronald D., 1991. "Economic Impacts Of Chemical Use Reduction On The South," Southern Journal of Agricultural Economics, Southern Agricultural Economics Association, vol. 23(1), pages 1-9, July.
    9. Farquharson, Robert J., 1991. "A Farm Level Evaluation of a New Twinning Technology in Beef Cattle," Review of Marketing and Agricultural Economics, Australian Agricultural and Resource Economics Society, vol. 59(01), pages 1-21, April.
    10. Florence Jacquet & Jean-Pierre Butault & Laurence Guichard, 2011. "An economic analysis of the possibility of reducing pesticides in French field crops," Post-Print hal-01018979, HAL.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jianxu Liu & Heng Wang & Sanzidur Rahman & Songsak Sriboonchitta, 2021. "Energy Efficiency, Energy Conservation and Determinants in the Agricultural Sector in Emerging Economies," Agriculture, MDPI, vol. 11(8), pages 1-18, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Drogué, Sophie & Jacquet, Florence & Subervie, Julie, 2014. "Introduction: Farmer’s adaptation to environmental changes," Review of Agricultural and Environmental Studies - Revue d'Etudes en Agriculture et Environnement (RAEStud), Institut National de la Recherche Agronomique (INRA), vol. 95(1).
    2. Viaggi, Davide & Raggi, Meri & Gomez y Paloma, Sergio, 2011. "Farm-household investment behaviour and the CAP decoupling: Methodological issues in assessing policy impacts," Journal of Policy Modeling, Elsevier, vol. 33(1), pages 127-145, January.
    3. Á. Pereira & A. Carballo-Penela & A. Guerra & X. Vence, 2018. "Designing a policy package for the promotion of servicising: A case study of vineyard crop protection in Galicia (Spain)," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 61(2), pages 348-369, January.
    4. Yeh, D. Adeline & Gomez, Miguel I. & Lin Lawell, C.-Y. Cynthia, 2020. "Sustainable Pest Management Under Uncertainty: A Dynamic Bioeconomic Analysis of Lowbush Blueberry Production," 2020 Annual Meeting, July 26-28, Kansas City, Missouri 304326, Agricultural and Applied Economics Association.
    5. Magrini, Marie-Benoit & Anton, Marc & Cholez, Célia & Corre-Hellou, Guenaelle & Duc, Gérard & Jeuffroy, Marie-Hélène & Meynard, Jean-Marc & Pelzer, Elise & Voisin, Anne-Sophie & Walrand, Stéphane, 2016. "Why are grain-legumes rarely present in cropping systems despite their environmental and nutritional benefits? Analyzing lock-in in the French agrifood system," Ecological Economics, Elsevier, vol. 126(C), pages 152-162.
    6. Alexandre Gohin, 2020. "Prospective sur l'évolution des systèmes agricoles sur les territoires bretons en lien avec la reconquête de la qualité de l'eau-Etude des impacts de ces évolutions sur les revenus, les emplois direct," Working Papers hal-03331840, HAL.
    7. Féménia, Fabienne & Letort, Elodie, 2016. "How to achieve significant reduction in pesticide use? An empirical evaluation of the impacts of pesticide taxation associated to a change in cropping practice," Working Papers 233482, Institut National de la recherche Agronomique (INRA), Departement Sciences Sociales, Agriculture et Alimentation, Espace et Environnement (SAE2).
    8. Margaux Lapierre & Alexandre Sauquet & Julie Subervie, 2019. "Providing technical assistance to peer networks to reduce pesticide use in Europe: Evidence from the French Ecophyto plan," Working Papers hal-02190979, HAL.
    9. Ragona, Maddalena & Mazzocchi, Mario, 2008. "Measuring the Impacts of Food Safety Regulations: A Methodological Review," 2008 International Congress, August 26-29, 2008, Ghent, Belgium 43864, European Association of Agricultural Economists.
    10. Ahmad Qosim & Anies Anies & Henna Rya Sunoko, 2019. "Empirical Scenarios of Emission Control and Economic Sustainability for Energy Input and Intervention of Agricultural Pesticides," International Journal of Energy Economics and Policy, Econjournals, vol. 9(4), pages 91-96.
    11. Grovermann, Christian & Schreinemachers, Pepijn & Berger, Thomas, 2015. "Evaluation of IPM adoption and financial instruments to reduce pesticide use in Thai agriculture using econometrics and agent-based modeling," 2015 Conference, August 9-14, 2015, Milan, Italy 211690, International Association of Agricultural Economists.
    12. Jouan, Julia & Heinrichs, Julia & Britz, Wolfgang & Pahmeyer, Christoph, 2019. "Legume production challenged by European policy coherence: a case-study approach from French and German dairy farms," 172nd EAAE Seminar, May 28-29, 2019, Brussels, Belgium 289765, European Association of Agricultural Economists.
    13. Archer, David Walter, 1995. "Self-insurance and self-protection in weed control: implications for nonpoint source pollution," ISU General Staff Papers 1995010108000012033, Iowa State University, Department of Economics.
    14. K. Hervé Dakpo & Yann Desjeux & Laure Latruffe, 2023. "Cost of abating excess nitrogen on wheat plots in France: An assessment with multi‐technology modelling," Journal of Agricultural Economics, Wiley Blackwell, vol. 74(3), pages 800-815, September.
    15. Julia Jouan & Aude Ridier & Matthieu Carof, 2018. "SYNERGY: a bio economic model assessing the economic and environmental impacts of increased regional protein self-sufficiency," Post-Print hal-01937084, HAL.
    16. Lin Xie & Zeyuan Qiu & Liangzhi You & Yang Kang, 2020. "A Macro Perspective on the Relationship between Farm Size and Agrochemicals Use in China," Sustainability, MDPI, vol. 12(21), pages 1-17, November.
    17. Mack, G. & Finger, R. & Ammann, J. & El Benni, N., 2023. "Modelling policies towards pesticide-free agricultural production systems," Agricultural Systems, Elsevier, vol. 207(C).
    18. Desbois, Dominique & Butault, Jean-Pierre & Surry, Yves, 2013. "Estimation des coûts de production en phytosanitaires pour les grandes cultures. Une approche par la régression quantile," Économie rurale, French Society of Rural Economics (SFER Société Française d'Economie Rurale), vol. 333(January-F).
    19. Archer, David W. & Shogren, Jason F., 1996. "Endogenous risk in weed control management," Agricultural Economics, Blackwell, vol. 14(2), pages 103-122, July.
    20. Mitchell, Paul D., 2011. "Estimating Soil Erosion and Fuel Use Changes and Their Monetary Values with AGSIM: A Case Study for Triazine Herbicides," Staff Paper Series 563, University of Wisconsin, Agricultural and Applied Economics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:8:y:2018:i:4:p:53-:d:139411. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.