IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v11y2021i11p1108-d673656.html
   My bibliography  Save this article

Crop Insurance, Land Productivity and the Environment: A Way forward to a Better Understanding

Author

Listed:
  • Agnieszka Kurdyś-Kujawska

    (Faculty of Economics, Department of Finance, Koszalin University of Technology, Kwiatkowskiego 6E, 75-343 Koszalin, Poland)

  • Agnieszka Sompolska-Rzechuła

    (Faculty of Economics, Department of Applied Mathematics in Economics, West Pomerania University of Technology Szczecin, Janickiego 31, 71-270 Szczecin, Poland)

  • Joanna Pawłowska-Tyszko

    (Director’s Plenipotentiary for FADN, Institute of Agricultural and Food Economics, National Research Institute, Świętokrzyska 20, 00-002 Warsaw, Poland)

  • Michał Soliwoda

    (Department of Finance and Risk Management, Institute of Agricultural and Food Economics, National Research Institute, Świętokrzyska 20, 00-002 Warsaw, Poland)

Abstract

Providing farmers with effective risk management tools and increasing the productivity of factors of production, while limiting negative effects on the environment, is an important challenge for the current EU agricultural policy. The aim of this research is to identify and evaluate the relationship between crop insurance and land productivity in the context of environmental effects. The study covered farms with crop insurance participating in the Polish FADN system. The article uses the TOPSIS method of organizing objects. We classify farms in terms of land productivity and examine the relationship between these results and the value of insurance coverage. In our conceptual and empirical framework, we recognize that there is a mutual relationship between crop insurance, land productivity and the environment. Our empirical results show that the level of insurance coverage may support the increase in land productivity, indirectly affecting the environment. Farms with the highest productivity level were characterized by an average value of insurance that was double that compared to farms with the lowest productivity level.

Suggested Citation

  • Agnieszka Kurdyś-Kujawska & Agnieszka Sompolska-Rzechuła & Joanna Pawłowska-Tyszko & Michał Soliwoda, 2021. "Crop Insurance, Land Productivity and the Environment: A Way forward to a Better Understanding," Agriculture, MDPI, vol. 11(11), pages 1-17, November.
  • Handle: RePEc:gam:jagris:v:11:y:2021:i:11:p:1108-:d:673656
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/11/11/1108/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/11/11/1108/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Walters, Cory G. & Shumway, C. Richard & Chouinard, Hayley H. & Wandschneider, Philip R., 2012. "Crop Insurance, Land Allocation, and the Environment," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 37(2), pages 1-20, August.
    2. Weber, Jeremy G. & Key, Nigel & O'Donoghue, Erik J., 2015. "Does Federal Crop Insurance Encourage Farm Specialization and Fertilizer and Chemical Use?," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 204972, Agricultural and Applied Economics Association.
    3. Giovanni Federico, 2005. "Introduction to Feeding the World: An Economic History of World Agriculture, 1800-2000," Introductory Chapters, in: Feeding the World: An Economic History of World Agriculture, 1800-2000, Princeton University Press.
    4. Jeremy G. Weber & Nigel Key & Erik O’Donoghue, 2016. "Does Federal Crop Insurance Make Environmental Externalities from Agriculture Worse?," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 3(3), pages 707-742.
    5. Roger Claassen & Christian Langpap & JunJie Wu, 2017. "Impacts of Federal Crop Insurance on Land Use and Environmental Quality," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 99(3), pages 592-613.
    6. Schnitkey, Gary, 2012. "Crop Insurance in 2012," farmdoc daily, University of Illinois at Urbana-Champaign, Department of Agricultural and Consumer Economics, vol. 2, July.
    7. ,, 2004. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 20(2), pages 427-429, April.
    8. Nazanin Vafaei & Rita A. Ribeiro & Luis M. Camarinha-Matos, 2018. "Data normalisation techniques in decision making: case study with TOPSIS method," International Journal of Information and Decision Sciences, Inderscience Enterprises Ltd, vol. 10(1), pages 19-38.
    9. Chakir, Raja & Hardelin, Julien, 2014. "Crop Insurance and pesticide use in French agriculture: an empirical analysis," Review of Agricultural and Environmental Studies - Revue d'Etudes en Agriculture et Environnement (RAEStud), Institut National de la Recherche Agronomique (INRA), vol. 95(1).
    10. Abdulai, Abdul-Nafeo & Abdulai, Awudu, 2017. "Examining the impact of conservation agriculture on environmental efficiency among maize farmers in Zambia," Environment and Development Economics, Cambridge University Press, vol. 22(2), pages 177-201, April.
    11. Maisashvili, Aleksandre & Bryant, Henry L. & Jones, Jason P.H., 2020. "Implications of Alternative Crop Insurance Subsidies," Journal of Agricultural and Applied Economics, Cambridge University Press, vol. 52(2), pages 240-263, May.
    12. Raja Chakir & Julien Hardelin, 2010. "Crop Insurance and Pesticides in French agriculture: an empirical analysis of multiple risks management," Working Papers 2010/04, INRA, Economie Publique.
    13. Kumar, Anjani & Saroj, Sunil & Mishra, Ashok K., 2021. "Crop insurance and crop productivity: Evidence from rice farmers in eastern India," IFPRI discussion papers 1996, International Food Policy Research Institute (IFPRI).
    14. Smith, Vincent H. & Goodwin, Barry K., 2003. "An Ex Post Evaluation of the Conservation Reserve, Federal Crop Insurance, and Other Government Programs: Program Participation and Soil Erosion," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 28(2), pages 1-16, August.
    15. Rega, Carlo & Helming, John & Paracchini, Maria Luisa, 2019. "Environmentalism and localism in agricultural and land-use policies can maintain food production while supporting biodiversity. Findings from simulations of contrasting scenarios in the EU," Land Use Policy, Elsevier, vol. 87(C).
    16. Roger Claassen & Christian Langpap & JunJie Wu, 2017. "Impacts of Federal Crop Insurance on Land Use and Environmental Quality," American Journal of Agricultural Economics, John Wiley & Sons, vol. 99(3), pages 592-613, April.
    17. Embaye, Weldensie T. & Bergtold, Jason S., 2017. "Effect of Crop Insurance Subsidy on Total Farm Productivity of Kansas Farms, US," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 258107, Agricultural and Applied Economics Association.
    18. Sporri, Martina & Baráth, Lajos & Bokusheva, Raushan & Ferto, Imre, 2012. "The Impact of Crop Insurance on the Economic Performance of Hungarian Cropping Farms," 123rd Seminar, February 23-24, 2012, Dublin, Ireland 122525, European Association of Agricultural Economists.
    19. Cornaggia, Jess, 2013. "Does risk management matter? Evidence from the U.S. agricultural industry," Journal of Financial Economics, Elsevier, vol. 109(2), pages 419-440.
    20. ,, 2004. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 20(1), pages 223-229, February.
    21. Joshua D. Woodard & Alexander D. Pavlista & Gary D. Schnitkey & Paul A. Burgener & Kimberley A. Ward, 2012. "Government Insurance Program Design, Incentive Effects, and Technology Adoption: The Case of Skip-Row Crop Insurance," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 94(4), pages 823-837.
    22. Erik J. O’Donoghue & Michael J. Roberts & Nigel Key, 2009. "Did the Federal Crop Insurance Reform Act Alter Farm Enterprise Diversification?," Journal of Agricultural Economics, Wiley Blackwell, vol. 60(1), pages 80-104, February.
    23. Möhring, Niklas & Dalhaus, Tobias & Enjolras, Geoffroy & Finger, Robert, 2020. "Crop insurance and pesticide use in European agriculture," Agricultural Systems, Elsevier, vol. 184(C).
    24. Sibiko, Kenneth W. & Qaim, Matin, 2017. "Weather Index Insurance, Agricultural Input Use, and Crop Productivity in Kenya," GlobalFood Discussion Papers 256214, Georg-August-Universitaet Goettingen, GlobalFood, Department of Agricultural Economics and Rural Development.
    25. Barry K. Goodwin & Vincent H. Smith, 2013. "What Harm Is Done By Subsidizing Crop Insurance?," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 95(2), pages 489-497.
    26. Sumner, Daniel A. & Zulauf, Carl R., 2012. "Economic and Environmental Effects of Agricultural Insurance Programs," C-FARE Reports 156622, Council on Food, Agricultural, and Resource Economics (C-FARE).
    27. Jianying Wang & Kevin Z. Chen & Sunipa Das Gupta & Zuhui Huang, 2015. "Is small still beautiful? A comparative study of rice farm size and productivity in China and India," China Agricultural Economic Review, Emerald Group Publishing Limited, vol. 7(3), pages 484-509, September.
    28. Ruiqing Miao, 0. "Climate, insurance and innovation: the case of drought and innovations in drought-tolerant traits in US agriculture," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 47(5), pages 1826-1860.
    29. Hongbin Cai & Yuyu Chen & Hanming Fang & Li-An Zhou, 2015. "The Effect of Microinsurance on Economic Activities: Evidence from a Randomized Field Experiment," The Review of Economics and Statistics, MIT Press, vol. 97(2), pages 287-300, May.
    30. John K. Horowitz & Erik Lichtenberg, 1993. "Insurance, Moral Hazard, and Chemical Use in Agriculture," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 75(4), pages 926-935.
    31. Tina-Simone Neset & Therese Asplund & Janina Käyhkö & Sirkku Juhola, 2019. "Making sense of maladaptation: Nordic agriculture stakeholders’ perspectives," Climatic Change, Springer, vol. 153(1), pages 107-121, March.
    32. Aleksandra Łuczak & Sławomir Kalinowski, 2020. "Assessing the level of the material deprivation of European Union countries," PLOS ONE, Public Library of Science, vol. 15(9), pages 1-20, September.
    33. Joseph Glauber & Katherine Baldwin & Jesús Antón & Urszula Ziebinska, 2021. "Design principles for agricultural risk management policies," OECD Food, Agriculture and Fisheries Papers 157, OECD Publishing.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ionuț-Alexandru Spânu & Alexandru Ozunu & Dacinia Crina Petrescu & Ruxandra Malina Petrescu-Mag, 2022. "A Comparative View of Agri-Environmental Indicators and Stakeholders’ Assessment of Their Quality," Agriculture, MDPI, vol. 12(4), pages 1-23, March.
    2. Alice Bonou & Markus Olapade & Alessandra Garbero & Leonard Wantchekon, 2023. "Evaluation of the Effects of Introducing Risk Management Tools in Agricultural Development: The Case of PADAER Senegal," Agriculture, MDPI, vol. 13(5), pages 1-15, April.
    3. Danilo Đokić & Bojan Matkovski & Marija Jeremić & Ivan Đurić, 2022. "Land Productivity and Agri-Environmental Indicators: A Case Study of Western Balkans," Land, MDPI, vol. 11(12), pages 1-13, December.
    4. Agnieszka Sompolska-Rzechuła & Agnieszka Kurdyś-Kujawska, 2022. "Assessment of the Development of Poverty in EU Countries," IJERPH, MDPI, vol. 19(7), pages 1-18, March.
    5. Agnieszka Sompolska-Rzechuła & Agnieszka Kurdyś-Kujawska, 2022. "Generation of Young Adults Living with Their Parents in European Union Countries," Sustainability, MDPI, vol. 14(7), pages 1-27, April.
    6. Đokić, Danilo & Matkovski, Bojan & Jeremić, Marija & Đurić, Ivan, 2022. "Land productivity and agri-environmental indicators: A case study of Western Balkans," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 11(12), pages 1-13.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mauro Vigani & Jonas Kathage, 2019. "To Risk or Not to Risk? Risk Management and Farm Productivity," American Journal of Agricultural Economics, John Wiley & Sons, vol. 101(5), pages 1432-1454, October.
    2. Lu, Xun & Che, Yuyuan & Rejesus, Roderick M. & Goodwin, Barry K. & Ghosh, Sujit K. & Paudel, Jayash, 2023. "Unintended environmental benefits of crop insurance: Nitrogen and phosphorus in water bodies," Ecological Economics, Elsevier, vol. 204(PA).
    3. Alexandre Gohin, 2019. "General Equilibrium Modelling of the Insurance Industry: U.S. Crop Insurance," Journal of Global Economic Analysis, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University, vol. 4(2), pages 108-145, December.
    4. Jeremy G. Weber & Nigel Key & Erik O’Donoghue, 2016. "Does Federal Crop Insurance Make Environmental Externalities from Agriculture Worse?," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 3(3), pages 707-742.
    5. Feng, Shuaizhang & Han, Yujie & Qiu, Huanguang, 2021. "Does crop insurance reduce pesticide usage? Evidence from China," China Economic Review, Elsevier, vol. 69(C).
    6. Möhring, Niklas & Dalhaus, Tobias & Enjolras, Geoffroy & Finger, Robert, 2020. "Crop insurance and pesticide use in European agriculture," Agricultural Systems, Elsevier, vol. 184(C).
    7. Zheng, Yanan & Goodhue, Rachael E., 2022. "Intensive or Extensive Margin Effects? Growers’ Responses to the Restriction of High-Volatile Organic Compound (VOC) Pesticide Products in the San Joaquin Valley, California," 2022 Annual Meeting, July 31-August 2, Anaheim, California 322085, Agricultural and Applied Economics Association.
    8. Prasenjit N. Ghosh & Ruiqing Miao & Emir Malikov, 2023. "Crop insurance premium subsidy and irrigation water withdrawals in the western United States," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 48(4), pages 968-992, October.
    9. Liu, Y. & Ker, A., 2018. "Is There Too Much History in Historical Yield Data," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 277293, International Association of Agricultural Economists.
    10. Peilu Zhang & Marco A. Palma, 2021. "Compulsory Versus Voluntary Insurance: An Online Experiment," American Journal of Agricultural Economics, John Wiley & Sons, vol. 103(1), pages 106-125, January.
    11. Zhifeng Zhang & Haodong Xu & Shuangshuang Shan & Qingzhi Liu & Yuqi Lu, 2022. "Whether the Agricultural Insurance Policy Achieves Green Income Growth—Evidence from the Implementation of China’s Total Cost Insurance Pilot Program," IJERPH, MDPI, vol. 19(2), pages 1-20, January.
    12. Biram, Hunter D. & Tack, Jesse & Nehring, Richard F., 2022. "Does Crop Insurance Participation Impact Quality-Adjusted Pesticide Usage?," 2022 Annual Meeting, July 31-August 2, Anaheim, California 322136, Agricultural and Applied Economics Association.
    13. Sarah C. Sellars & Nathanael M. Thompson & Michael E. Wetzstein & Laura Bowling & Keith Cherkauer & Charlotte Lee & Jane Frankenberger & Ben Reinhart, 2022. "Does crop insurance inhibit climate change technology adoption?," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(3), pages 1-20, March.
    14. Yu, Jisang & Smith, Aaron & Sumner, Daniel A., 2016. "The Effects of the Premium Subsidies in the U.S. Federal Crop Insurance Program on Crop Acreage," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 236022, Agricultural and Applied Economics Association.
    15. Geoffroy Enjolras & Magali Aubert, 2018. "Does crop insurance lead to better environmental practices? Evidence from French farms," Post-Print hal-02048349, HAL.
    16. Juan He & Xiaoyong Zheng & Roderick Rejesus & Jose Yorobe, 2020. "Input use under cost‐of‐production crop insurance: Theory and evidence," Agricultural Economics, International Association of Agricultural Economists, vol. 51(3), pages 343-357, May.
    17. Woodard, Joshua D. & Chiu Verteramo, Leslie & Miller, Alyssa P., 2015. "Adaptation of U.S. Agricultural Production to Drought and Climate Change," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205903, Agricultural and Applied Economics Association.
    18. Kemény, Gábor & Varga, Tibor & Fogarasi, József & Tóth, Kristóf, 2012. "The development of Hungarian agricultural insurance system," Problems of World Agriculture / Problemy Rolnictwa Światowego, Warsaw University of Life Sciences, vol. 12(27), pages 1-10, September.
    19. Geoffroy Enjolras & Magali Aubert, 2020. "How does crop insurance influence pesticide use? Evidence from French farms," Review of Agricultural, Food and Environmental Studies, Springer, vol. 101(4), pages 461-485, December.
    20. Yuqiang Gao & Yongkang Shu & Hongjie Cao & Shuting Zhou & Shaobin Shi, 2021. "Fiscal Policy Dilemma in Resolving Agricultural Risks: Evidence from China’s Agricultural Insurance Subsidy Pilot," IJERPH, MDPI, vol. 18(14), pages 1-11, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:11:y:2021:i:11:p:1108-:d:673656. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.