IDEAS home Printed from https://ideas.repec.org/a/fan/efeefe/vhtml10.3280-efe2017-001005.html
   My bibliography  Save this article

Development of policy metrics for circularity assessment in building assemblies

Author

Listed:
  • Matan Mayer
  • Martin Bechthold

Abstract

Design for material recovery is drawing increased interest as a strategy for eliminating landfill waste outputs from building end-of-life operations. Yet, a lack of comprehensive performance evaluation methods in this field is preventing policymakers and stakeholders from setting verifiable recovery goals for new construction and retrofitting. Responding to this problem, the following paper proposes an evaluation framework and a material recovery potential index (MRPI) for building assemblies. The system evaluates recovery potential at both the material and assembly levels through a series of categories and subcategories. Assessment approaches from other design and engineering disciplines are introduced and selectively adapted to reflect the unique recovery challenges that are characteristic of buildings and infrastructure. A weighting strategy is developed using the analytic hierarchy process (AHP) method and the entire system is successfully tested using output validation. Lastly, the MRPI is applied in a comparative recovery potential study of 12 typical envelope assemblies. Results indicate a strong correlation between MRPI scores and other environmental indicators such as embodied energy levels and global warming potential values.

Suggested Citation

  • Matan Mayer & Martin Bechthold, 2017. "Development of policy metrics for circularity assessment in building assemblies," ECONOMICS AND POLICY OF ENERGY AND THE ENVIRONMENT, FrancoAngeli Editore, vol. 2017(1-2), pages 57-84.
  • Handle: RePEc:fan:efeefe:v:html10.3280/efe2017-001005
    as

    Download full text from publisher

    File URL: http://www.francoangeli.it/riviste/Scheda_Rivista.aspx?IDArticolo=61081&Tipo=ArticoloPDF
    Download Restriction: Single articles can be downloaded buying download credits, for info: https://www.francoangeli.it/DownloadCredit
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bockstaller, C. & Girardin, P., 2003. "How to validate environmental indicators," Agricultural Systems, Elsevier, vol. 76(2), pages 639-653, May.
    2. Manar Shami, 2006. "A comprehensive review of building deconstruction and salvage: deconstruction benefits and hurdles," International Journal of Environmental Technology and Management, Inderscience Enterprises Ltd, vol. 6(3/4), pages 236-291.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Roberta Melella & Giacomo Di Ruocco & Alfonso Sorvillo, 2021. "Circular Construction Process: Method for Developing a Selective, Low CO 2eq Disassembly and Demolition Plan," Sustainability, MDPI, vol. 13(16), pages 1-34, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fermín Sánchez-Carracedo & Jordi Segalas & Gorka Bueno & Pere Busquets & Joan Climent & Victor G. Galofré & Boris Lazzarini & David Lopez & Carme Martín & Rafael Miñano & Estíbaliz Sáez de Cámara & Bá, 2021. "Tools for Embedding and Assessing Sustainable Development Goals in Engineering Education," Sustainability, MDPI, vol. 13(21), pages 1-30, November.
    2. Spaeter, Sandrine & Verchère, Alban, 2004. "Aléa moral et politiques d’audit optimales dans le cadre de la pollution d’origine agricole de l’eau," Cahiers d'Economie et de Sociologie Rurales (CESR), Institut National de la Recherche Agronomique (INRA), vol. 71.
    3. Jacquet, Florence & Butault, Jean-Pierre & Guichard, Laurence, 2011. "An economic analysis of the possibility of reducing pesticides in French field crops," Ecological Economics, Elsevier, vol. 70(9), pages 1638-1648, July.
    4. Oscar Reicher & Verónica Delgado & José-Luis Arumi, 2021. "Use of Indicators in Strategic Environmental Assessments of Urban-Planning Instruments: A Case Study," Sustainability, MDPI, vol. 13(22), pages 1-18, November.
    5. Shamsheer Haq & Ismet Boz, 2020. "Measuring environmental, economic, and social sustainability index of tea farms in Rize Province, Turkey," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(3), pages 2545-2567, March.
    6. Meiling Zhang & Stephen Nazieh & Teddy Nkrumah & Xingyu Wang, 2021. "Simulating Grassland Carbon Dynamics in Gansu for the Past Fifty (50) Years (1968–2018) Using the Century Model," Sustainability, MDPI, vol. 13(16), pages 1-20, August.
    7. Groot, Jeroen C.J. & Oomen, Gerard J.M. & Rossing, Walter A.H., 2012. "Multi-objective optimization and design of farming systems," Agricultural Systems, Elsevier, vol. 110(C), pages 63-77.
    8. Adriana Luciano & Federica Pascale & Francesco Polverino & Alison Pooley, 2020. "Measuring Age-Friendly Housing: A Framework," Sustainability, MDPI, vol. 12(3), pages 1-35, January.
    9. Ranjan Roy & Ngai Weng Chan, 2012. "An assessment of agricultural sustainability indicators in Bangladesh: review and synthesis," Environment Systems and Decisions, Springer, vol. 32(1), pages 99-110, March.
    10. van Calker, K.J. & Berentsen, P.B.M. & de Boer, I.J.M. & Giesen, G.W.J. & Huirne, R.B.M., 2007. "Modelling worker physical health and societal sustainability at farm level: An application to conventional and organic dairy farming," Agricultural Systems, Elsevier, vol. 94(2), pages 205-219, May.
    11. Berjawi, A.E.H. & Walker, S.L. & Patsios, C. & Hosseini, S.H.R., 2021. "An evaluation framework for future integrated energy systems: A whole energy systems approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    12. Carof, Matthieu & Godinot, Olivier, 2018. "A free online tool to calculate three nitrogen-related indicators for farming systems," Agricultural Systems, Elsevier, vol. 162(C), pages 28-33.
    13. Gupta, Suraksha & Czinkota, Michael & Melewar, T.C., 2013. "Embedding knowledge and value of a brand into sustainability for differentiation," Journal of World Business, Elsevier, vol. 48(3), pages 287-296.
    14. Torres-Sibille, Ana del Carmen & Cloquell-Ballester, Vicente-Agustín & Cloquell-Ballester, Víctor-Andrés & Artacho Ramírez, Miguel Ángel, 2009. "Aesthetic impact assessment of solar power plants: An objective and a subjective approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(5), pages 986-999, June.
    15. Juventia, Stella D. & Selin Norén, Isabella L.M. & van Apeldoorn, Dirk F. & Ditzler, Lenora & Rossing, Walter A.H., 2022. "Spatio-temporal design of strip cropping systems," Agricultural Systems, Elsevier, vol. 201(C).
    16. Frédéric Zahm & Philippe Viaux & Lionel Vilain & Philippe Girardin & Christian Mouchet, 2008. "Assessing farm sustainability with the IDEA method - from the concept of agriculture sustainability to case studies on farms," Sustainable Development, John Wiley & Sons, Ltd., vol. 16(4), pages 271-281.
    17. Gabriel Hoh Teck Ling & Pau Chung Leng, 2018. "Ten Steps Qualitative Modelling: Development and Validation of Conceptual Institutional-Social-Ecological Model of Public Open Space (POS) Governance and Quality," Resources, MDPI, vol. 7(4), pages 1-23, September.
    18. Paula Trivino-Tarradas & Manuel R. Gomez-Ariza & Gottlieb Basch & Emilio J. Gonzalez-Sanchez, 2019. "Sustainability Assessment of Annual and Permanent Crops: The Inspia Model," Sustainability, MDPI, vol. 11(3), pages 1-21, January.
    19. Torres Sibille, Ana del Carmen & Cloquell-Ballester, Víctor-Andrés & Cloquell-Ballester, Vicente-Agustín & Darton, Richard, 2009. "Development and validation of a multicriteria indicator for the assessment of objective aesthetic impact of wind farms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(1), pages 40-66, January.
    20. Walter, Alexander I. & Helgenberger, Sebastian & Wiek, Arnim & Scholz, Roland W., 2007. "Measuring societal effects of transdisciplinary research projects: Design and application of an evaluation method," Evaluation and Program Planning, Elsevier, vol. 30(4), pages 325-338, November.

    More about this item

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • Q53 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Air Pollution; Water Pollution; Noise; Hazardous Waste; Solid Waste; Recycling
    • Q57 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Ecological Economics

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fan:efeefe:v:html10.3280/efe2017-001005. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Stefania Rosato (email available below). General contact details of provider: http://www.francoangeli.it/riviste/sommario.aspx?IDRivista=10 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.