IDEAS home Printed from https://ideas.repec.org/a/eee/trapol/v85y2020icpa23-a32.html
   My bibliography  Save this article

Zero-emission vehicle exposure within U.S. carsharing fleets and impacts on sentiment toward electric-drive vehicles

Author

Listed:
  • Shaheen, Susan
  • Martin, Elliot
  • Totte, Hannah

Abstract

Reducing carbon emissions from the United States (U.S.) transportation sector has emerged as a priority action to combat climate change. Carsharing and zero-emission vehicles (ZEVs) could be integral to creating a more sustainable transportation system. This paper presents the results of a study that evaluated the impacts of ZEV exposure on U.S. carsharing users. Surveys were administered to control and experimental groups of carsharing members that used shared plug-in electric vehicles (PHEVs) or electric vehicles (EVs). Results showed that users who drove shared PHEVs or EVs more frequently were more likely to exhibit improved ZEV opinions. The population of respondents that used shared EVs and PHEVs were also more likely to recommend that others try driving a ZEV. The results suggest that exposure to PHEVs or EVs through carsharing increased a user's reported likeliness to purchase a ZEV in the future. The experimental group, who employed shared PHEVs or EVs, was more likely to indicate that their next vehicle purchase will be a PHEV or EV than the control group. Collectively, the results suggest that temporary exposure to ZEVs through carsharing improves perceptions that may lead to an expanded ZEV market share.

Suggested Citation

  • Shaheen, Susan & Martin, Elliot & Totte, Hannah, 2020. "Zero-emission vehicle exposure within U.S. carsharing fleets and impacts on sentiment toward electric-drive vehicles," Transport Policy, Elsevier, vol. 85(C), pages 23-32.
  • Handle: RePEc:eee:trapol:v:85:y:2020:i:c:p:a23-a32
    DOI: 10.1016/j.tranpol.2019.09.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0967070X18305985
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tranpol.2019.09.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Egbue, Ona & Long, Suzanna, 2012. "Barriers to widespread adoption of electric vehicles: An analysis of consumer attitudes and perceptions," Energy Policy, Elsevier, vol. 48(C), pages 717-729.
    2. Shaheen, Susan A & Wright, John & Sperling, Daniel, 2002. "California's Zero-Emission Vehicle Mandate: Linking Clean-Fuel Cars, Carsharing, and Station Car Strategies," Institute of Transportation Studies, Working Paper Series qt8tx0d37d, Institute of Transportation Studies, UC Davis.
    3. Javid, Roxana J. & Nejat, Ali, 2017. "A comprehensive model of regional electric vehicle adoption and penetration," Transport Policy, Elsevier, vol. 54(C), pages 30-42.
    4. Shaheen, Susan A & Wright, John & Sperling, Daniel, 2002. "California's Zero-Emission Vehicle Mandate: Linking Clean-Fuel Cars, Carsharing, and Station Car Strategies," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt8tx0d37d, Institute of Transportation Studies, UC Berkeley.
    5. Shaheen, Susan PhD & Cano, Lauren & Camel, Madonna, 2015. "Exploring Electric Vehicle Carsharing As A Mobility Option for Older Adults:A Case Study of A Senior Adult Community in The San Francisco Bay Area," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt0cz5s74s, Institute of Transportation Studies, UC Berkeley.
    6. Zachary P. Cano & Dustin Banham & Siyu Ye & Andreas Hintennach & Jun Lu & Michael Fowler & Zhongwei Chen, 2018. "Batteries and fuel cells for emerging electric vehicle markets," Nature Energy, Nature, vol. 3(4), pages 279-289, April.
    7. Berkeley, Nigel & Bailey, David & Jones, Andrew & Jarvis, David, 2017. "Assessing the transition towards Battery Electric Vehicles: A Multi-Level Perspective on drivers of, and barriers to, take up," Transportation Research Part A: Policy and Practice, Elsevier, vol. 106(C), pages 320-332.
    8. Seiho Kim & Jaesik Lee & Chulung Lee, 2017. "Does Driving Range of Electric Vehicles Influence Electric Vehicle Adoption?," Sustainability, MDPI, vol. 9(10), pages 1-15, October.
    9. Dijk, Marc & Orsato, Renato J. & Kemp, René, 2013. "The emergence of an electric mobility trajectory," Energy Policy, Elsevier, vol. 52(C), pages 135-145.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rosales-Tristancho, Abel & Brey, Raúl & Carazo, Ana F. & Brey, J. Javier, 2022. "Analysis of the barriers to the adoption of zero-emission vehicles in Spain," Transportation Research Part A: Policy and Practice, Elsevier, vol. 158(C), pages 19-43.
    2. Chen, Fangxi & Yin, Zhiwei & Ye, Yingwei & Sun, Daniel(Jian), 2020. "Taxi hailing choice behavior and economic benefit analysis of emission reduction based on multi-mode travel big data," Transport Policy, Elsevier, vol. 97(C), pages 73-84.
    3. Rosales-Tristancho, Abel & Carazo, Ana F. & Brey, Raúl, 2021. "A study of the willingness of Spanish drivers to pay a premium for ZEVs," Energy Policy, Elsevier, vol. 149(C).
    4. Duarte Souza Alvarenga Santos, Nathália & Rückert Roso, Vinícius & Teixeira Malaquias, Augusto César & Coelho Baêta, José Guilherme, 2021. "Internal combustion engines and biofuels: Examining why this robust combination should not be ignored for future sustainable transportation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    5. Iogansen, Xiatian & Wang, Kailai & Bunch, David & Matson, Grant & Circella, Giovanni, 2023. "Deciphering the factors associated with adoption of alternative fuel vehicles in California: An investigation of latent attitudes, socio-demographics, and neighborhood effects," Transportation Research Part A: Policy and Practice, Elsevier, vol. 168(C).
    6. Qian Duan & Xin Ye & Jian Li & Ke Wang, 2020. "Empirical Modeling Analysis of Potential Commute Demand for Carsharing in Shanghai, China," Sustainability, MDPI, vol. 12(2), pages 1-18, January.
    7. Katarzyna Turoń, 2022. "Selection of Car Models with a Classic and Alternative Drive to the Car-Sharing Services from the System’s Rare Users Perspective," Energies, MDPI, vol. 15(19), pages 1-15, September.
    8. Burghard, Uta & Scherrer, Aline, 2022. "Sharing vehicles or sharing rides - Psychological factors influencing the acceptance of carsharing and ridepooling in Germany," Energy Policy, Elsevier, vol. 164(C).
    9. Jorge Martins & F. P. Brito, 2020. "Alternative Fuels for Internal Combustion Engines," Energies, MDPI, vol. 13(16), pages 1-34, August.
    10. Manzolli, Jônatas Augusto & Trovão, João Pedro & Antunes, Carlos Henggeler, 2022. "A review of electric bus vehicles research topics – Methods and trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    11. Ziad Yassine & Elliot W. Martin & Susan A. Shaheen, 2024. "Can Electric Vehicle Carsharing Bridge the Green Divide? A Study of BlueLA’s Environmental Impacts among Underserved Communities and the Broader Population," Energies, MDPI, vol. 17(2), pages 1-18, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Patyal, Vishal Singh & Kumar, Ravi & Kushwah, Shiksha, 2021. "Modeling barriers to the adoption of electric vehicles: An Indian perspective," Energy, Elsevier, vol. 237(C).
    2. Trencher, Gregory & Taeihagh, Araz & Yarime, Masaru, 2020. "Overcoming barriers to developing and diffusing fuel-cell vehicles: Governance strategies and experiences in Japan," Energy Policy, Elsevier, vol. 142(C).
    3. Xiong, Siqin & Yuan, Yi & Yao, Jia & Bai, Bo & Ma, Xiaoming, 2023. "Exploring consumer preferences for electric vehicles based on the random coefficient logit model," Energy, Elsevier, vol. 263(PA).
    4. Elena Higueras-Castillo & Sebastian Molinillo & J. Andres Coca-Stefaniak & Francisco Liébana-Cabanillas, 2020. "Potential Early Adopters of Hybrid and Electric Vehicles in Spain—Towards a Customer Profile," Sustainability, MDPI, vol. 12(11), pages 1-18, May.
    5. Green, Erin H. & Skerlos, Steven J. & Winebrake, James J., 2014. "Increasing electric vehicle policy efficiency and effectiveness by reducing mainstream market bias," Energy Policy, Elsevier, vol. 65(C), pages 562-566.
    6. Shaheen, Susan A. & Meyn, Mollyanne & Wipyewski, Kamill, 2003. "U.S. Shared-use Vehicle Survey Findings: Opportunities and Obstacles for Carsharing and Station Car Growth," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt69x684m2, Institute of Transportation Studies, UC Berkeley.
    7. Salari, Nasir, 2022. "Electric vehicles adoption behaviour: Synthesising the technology readiness index with environmentalism values and instrumental attributes," Transportation Research Part A: Policy and Practice, Elsevier, vol. 164(C), pages 60-81.
    8. Rodrigues, João L. & Bolognesi, Hugo M. & Melo, Joel D. & Heymann, Fabian & Soares, F.J., 2019. "Spatiotemporal model for estimating electric vehicles adopters," Energy, Elsevier, vol. 183(C), pages 788-802.
    9. Schulz, Felix & Rode, Johannes, 2022. "Public charging infrastructure and electric vehicles in Norway," Energy Policy, Elsevier, vol. 160(C).
    10. Oryani, Bahareh & Koo, Yoonmo & Shafiee, Afsaneh & Rezania, Shahabaldin & Jung, Jiyeon & Choi, Hyunhong & Khan, Muhammad Kamran, 2022. "Heterogeneous preferences for EVs: Evidence from Iran," Renewable Energy, Elsevier, vol. 181(C), pages 675-691.
    11. Wee, Sherilyn & Coffman, Makena & Allen, Scott, 2020. "EV driver characteristics: Evidence from Hawaii," Transport Policy, Elsevier, vol. 87(C), pages 33-40.
    12. Zarazua de Rubens, Gerardo, 2019. "Who will buy electric vehicles after early adopters? Using machine learning to identify the electric vehicle mainstream market," Energy, Elsevier, vol. 172(C), pages 243-254.
    13. Danielis, Romeo & Scorrano, Mariangela & Giansoldati, Marco & Rotaris, Lucia, 2019. "A meta-analysis of the importance of the driving range in consumers’ preference studies for battery electric vehicles," Working Papers 19_2, SIET Società Italiana di Economia dei Trasporti e della Logistica.
    14. Anders F. Jensen & Thomas K. Rasmussen & Carlo G. Prato, 2020. "A Route Choice Model for Capturing Driver Preferences When Driving Electric and Conventional Vehicles," Sustainability, MDPI, vol. 12(3), pages 1-18, February.
    15. Cecere, Grazia & Corrocher, Nicoletta & Guerzoni, Marco, 2018. "Price or performance? A probabilistic choice analysis of the intention to buy electric vehicles in European countries," Energy Policy, Elsevier, vol. 118(C), pages 19-32.
    16. Guevara, C. Angelo & Figueroa, Esteban & Munizaga, Marcela A., 2021. "Paving the road for electric vehicles: Lessons from a randomized experiment in an introduction stage market," Transportation Research Part A: Policy and Practice, Elsevier, vol. 153(C), pages 326-340.
    17. Giansoldati, Marco & Danielis, Romeo & Rotaris, Lucia & Scorrano, Mariangela, 2018. "The role of driving range in consumers' purchasing decision for electric cars in Italy," Energy, Elsevier, vol. 165(PA), pages 267-274.
    18. Haidar, Bassem & Aguilar Rojas, Maria Teresa, 2022. "The relationship between public charging infrastructure deployment and other socio-economic factors and electric vehicle adoption in France," Research in Transportation Economics, Elsevier, vol. 95(C).
    19. Piotr Rosik & Sławomir Goliszek & Tomasz Komornicki & Patryk Duma, 2021. "Forecast of the Impact of Electric Car Battery Performance and Infrastructural and Demographic Changes on Cumulative Accessibility for the Five Most Populous Cities in Poland," Energies, MDPI, vol. 14(24), pages 1-12, December.
    20. Li, Xiaomin & Chen, Pu & Wang, Xingwu, 2017. "Impacts of renewables and socioeconomic factors on electric vehicle demands – Panel data studies across 14 countries," Energy Policy, Elsevier, vol. 109(C), pages 473-478.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:trapol:v:85:y:2020:i:c:p:a23-a32. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/30473/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.