IDEAS home Printed from https://ideas.repec.org/a/eee/trapol/v59y2017icp134-141.html
   My bibliography  Save this article

Is fare increment desirable for ensuring operational viability of private buses?

Author

Listed:
  • Dandapat, Saurabh
  • Cheranchery, Munavar Fairooz
  • Maitra, Bhargab

Abstract

The paper reports an investigation on the requirement of fare increment for achieving the operational viability of private buses in the context of an emerging country. Taking an existing route in Kolkata city which is served by private buses, several scenarios were investigated to achieve the viability of service through interventions in fare, design of service, and supply of buses. A simulation framework was used for the evaluation of various scenarios. The study brings out new evidences to question the conventional approach of increasing the bus fare to satisfy the operational viability. It is shown that the fare and the revenue requirements are distorted due to the oversupply of buses and non-optimal service. The analysis shows that even with the present fare, it is possible to resolve the viability issue by optimizing the service and supply. The results presented in the paper are case specific but are likely to encourage policy makers to carry out similar investigations in other cities in India as well as in other developing countries to improve urban bus service without putting an additional burden on the users.

Suggested Citation

  • Dandapat, Saurabh & Cheranchery, Munavar Fairooz & Maitra, Bhargab, 2017. "Is fare increment desirable for ensuring operational viability of private buses?," Transport Policy, Elsevier, vol. 59(C), pages 134-141.
  • Handle: RePEc:eee:trapol:v:59:y:2017:i:c:p:134-141
    DOI: 10.1016/j.tranpol.2017.07.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0967070X17300872
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tranpol.2017.07.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhao, Fang & Zeng, Xiaogang, 2008. "Optimization of transit route network, vehicle headways and timetables for large-scale transit networks," European Journal of Operational Research, Elsevier, vol. 186(2), pages 841-855, April.
    2. Arnold Barnett, 1974. "On Controlling Randomness in Transit Operations," Transportation Science, INFORMS, vol. 8(2), pages 102-116, May.
    3. Badami, Madhav G. & Haider, Murtaza, 2007. "An analysis of public bus transit performance in Indian cities," Transportation Research Part A: Policy and Practice, Elsevier, vol. 41(10), pages 961-981, December.
    4. Shafahi, Yousef & Khani, Alireza, 2010. "A practical model for transfer optimization in a transit network: Model formulations and solutions," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(6), pages 377-389, July.
    5. E. E. Osuna & G. F. Newell, 1972. "Control Strategies for an Idealized Public Transportation System," Transportation Science, INFORMS, vol. 6(1), pages 52-72, February.
    6. Shyue Koong Chang & Schonfeld, Paul M., 1991. "Multiple period optimization of bus transit systems," Transportation Research Part B: Methodological, Elsevier, vol. 25(6), pages 453-478, December.
    7. James H. Bookbinder & Alain Désilets, 1992. "Transfer Optimization in a Transit Network," Transportation Science, INFORMS, vol. 26(2), pages 106-118, May.
    8. Ceder, Avishai & Wilson, Nigel H. M., 1986. "Bus network design," Transportation Research Part B: Methodological, Elsevier, vol. 20(4), pages 331-344, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Roy, Subhojit & Basu, Debasis, 2020. "Selection of intervention areas for improving travel condition of walk-accessed bus users with a focus on their accessibility: An experience in Bhubaneswar," Transport Policy, Elsevier, vol. 96(C), pages 29-39.
    2. Cheranchery, Munavar Fairooz & Maitra, Bhargab, 2021. "Improving quality of ordinary bus service in Kolkata city: Integrating conflicting requirements of users and transit operator," Transport Policy, Elsevier, vol. 111(C), pages 17-27.
    3. Cheranchery, Munavar Fairooz & Maitra, Bhargab, 2018. "Investigating perception of captive and choice riders for formulating service standards of ordinary and premium buses in Indian cities," Transport Policy, Elsevier, vol. 72(C), pages 89-96.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hall, Randolph & Dessouky, Maged & Zhang, Lei & Singh, Ajay & Patel, Vishal, 1999. "Evaluation of ITS Technology for Bus Transit Systems," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt2nq1824t, Institute of Transportation Studies, UC Berkeley.
    2. Ibarra-Rojas, O.J. & Delgado, F. & Giesen, R. & Muñoz, J.C., 2015. "Planning, operation, and control of bus transport systems: A literature review," Transportation Research Part B: Methodological, Elsevier, vol. 77(C), pages 38-75.
    3. Aldaihani, Majid M. & Quadrifoglio, Luca & Dessouky, Maged M. & Hall, Randolph, 2004. "Network design for a grid hybrid transit service," Transportation Research Part A: Policy and Practice, Elsevier, vol. 38(7), pages 511-530, August.
    4. Kang, Liujiang & Wu, Jianjun & Sun, Huijun & Zhu, Xiaoning & Gao, Ziyou, 2015. "A case study on the coordination of last trains for the Beijing subway network," Transportation Research Part B: Methodological, Elsevier, vol. 72(C), pages 112-127.
    5. Wu, Weitiao & Liu, Ronghui & Jin, Wenzhou, 2016. "Designing robust schedule coordination scheme for transit networks with safety control margins," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 495-519.
    6. Dessouky, Maged & Hall, Randolph & Zhang, Lei & Singh, Ajay, 2003. "Real-time control of buses for schedule coordination at a terminal," Transportation Research Part A: Policy and Practice, Elsevier, vol. 37(2), pages 145-164, February.
    7. Kuo, Yong-Hong & Leung, Janny M.Y. & Yan, Yimo, 2023. "Public transport for smart cities: Recent innovations and future challenges," European Journal of Operational Research, Elsevier, vol. 306(3), pages 1001-1026.
    8. Sánchez-Martínez, G.E. & Koutsopoulos, H.N. & Wilson, N.H.M., 2016. "Real-time holding control for high-frequency transit with dynamics," Transportation Research Part B: Methodological, Elsevier, vol. 83(C), pages 1-19.
    9. Mahmoud Owais & Abdou S. Ahmed & Ghada S. Moussa & Ahmed A. Khalil, 2020. "An Optimal Metro Design for Transit Networks in Existing Square Cities Based on Non-Demand Criterion," Sustainability, MDPI, vol. 12(22), pages 1-28, November.
    10. Yiyo Kuo, 2014. "Design method using hybrid of line-type and circular-type routes for transit network system optimization," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(2), pages 600-613, July.
    11. Luo, Sida & Nie, Yu (Marco), 2020. "Paired-line hybrid transit design considering spatial heterogeneity," Transportation Research Part B: Methodological, Elsevier, vol. 132(C), pages 320-339.
    12. Pternea, Moschoula & Kepaptsoglou, Konstantinos & Karlaftis, Matthew G., 2015. "Sustainable urban transit network design," Transportation Research Part A: Policy and Practice, Elsevier, vol. 77(C), pages 276-291.
    13. Jara-Díaz, Sergio & Fielbaum, Andrés & Gschwender, Antonio, 2020. "Strategies for transit fleet design considering peak and off-peak periods using the single-line model," Transportation Research Part B: Methodological, Elsevier, vol. 142(C), pages 1-18.
    14. Chen, Peng (Will) & Nie, Yu (Marco), 2018. "Optimal design of demand adaptive paired-line hybrid transit: Case of radial route structure," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 110(C), pages 71-89.
    15. Andrés Fielbaum & Sergio Jara-Díaz & Antonio Gschwender, 2018. "Transit Line Structures in a General Parametric City: The Role of Heuristics," Transportation Science, INFORMS, vol. 52(5), pages 1092-1105, October.
    16. Zhou, Chang & Tian, Qiong & Wang, David Z.W., 2022. "A novel control strategy in mitigating bus bunching: Utilizing real-time information," Transport Policy, Elsevier, vol. 123(C), pages 1-13.
    17. Daraio, Cinzia & Diana, Marco & Di Costa, Flavia & Leporelli, Claudio & Matteucci, Giorgio & Nastasi, Alberto, 2016. "Efficiency and effectiveness in the urban public transport sector: A critical review with directions for future research," European Journal of Operational Research, Elsevier, vol. 248(1), pages 1-20.
    18. Fielbaum, Andrés & Jara-Diaz, Sergio & Gschwender, Antonio, 2020. "Beyond the Mohring effect: Scale economies induced by transit lines structures design," Economics of Transportation, Elsevier, vol. 22(C).
    19. Guihaire, Valérie & Hao, Jin-Kao, 2008. "Transit network design and scheduling: A global review," Transportation Research Part A: Policy and Practice, Elsevier, vol. 42(10), pages 1251-1273, December.
    20. Berrebi, Simon J. & Crudden, Sean Óg & Watkins, Kari E., 2018. "Translating research to practice: Implementing real-time control on high-frequency transit routes," Transportation Research Part A: Policy and Practice, Elsevier, vol. 111(C), pages 213-226.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:trapol:v:59:y:2017:i:c:p:134-141. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/30473/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.