IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v93y2016ipap495-519.html
   My bibliography  Save this article

Designing robust schedule coordination scheme for transit networks with safety control margins

Author

Listed:
  • Wu, Weitiao
  • Liu, Ronghui
  • Jin, Wenzhou

Abstract

We propose a robust schedule coordination scheme which combines timetable planning with a semi-flexible departure delayed control strategy in case of disruptions. The flexibility is provided by allowing holding for the late incoming bus within a safety control margin (SCM). In this way, the stochastic travel time is addressed by the integration of real-time control and slacks at the planning phase. The schedule coordination problem then jointly optimises the planning headways and slack times in the timetable subject to SCM. Analytical formulations of cost functions are derived for three types of operating modes: uncoordinated operation, departure punctual control and departure delayed control. The problem is formulated as a stochastic mixed integer programming model and solved by a branch-and-bound algorithm. Numerical results provide an insight into the interaction between SCM and slack times, and demonstrate that the proposed model leads to cost saving and higher efficiency when SCM is considered. Compared to the conventional operating modes, the proposed method also presents advantages in transfer reliability and robustness to delay and demand variation.

Suggested Citation

  • Wu, Weitiao & Liu, Ronghui & Jin, Wenzhou, 2016. "Designing robust schedule coordination scheme for transit networks with safety control margins," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 495-519.
  • Handle: RePEc:eee:transb:v:93:y:2016:i:pa:p:495-519
    DOI: 10.1016/j.trb.2016.07.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261515300515
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2016.07.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sun, Yanshuo & Schonfeld, Paul, 2016. "Holding decisions for correlated vehicle arrivals at intermodal freight transfer terminals," Transportation Research Part B: Methodological, Elsevier, vol. 90(C), pages 218-240.
    2. Schmöcker, Jan-Dirk & Sun, Wenzhe & Fonzone, Achille & Liu, Ronghui, 2016. "Bus bunching along a corridor served by two lines," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 300-317.
    3. Shoaib M. Chowdhury & Steven I-Jy Chien, 2002. "Intermodal Transit System Coordination," Transportation Planning and Technology, Taylor & Francis Journals, vol. 25(4), pages 257-287, January.
    4. Jiamin Zhao & Maged Dessouky & Satish Bukkapatnam, 2006. "Optimal Slack Time for Schedule-Based Transit Operations," Transportation Science, INFORMS, vol. 40(4), pages 529-539, November.
    5. Xu Jun Eberlein & Nigel H. M. Wilson & David Bernstein, 2001. "The Holding Problem with Real–Time Information Available," Transportation Science, INFORMS, vol. 35(1), pages 1-18, February.
    6. Tirachini, Alejandro & Hensher, David A. & Jara-Díaz, Sergio R., 2010. "Restating modal investment priority with an improved model for public transport analysis," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 46(6), pages 1148-1168, November.
    7. Zhou, Xuesong & Zhong, Ming, 2007. "Single-track train timetabling with guaranteed optimality: Branch-and-bound algorithms with enhanced lower bounds," Transportation Research Part B: Methodological, Elsevier, vol. 41(3), pages 320-341, March.
    8. Ibarra-Rojas, Omar J. & Rios-Solis, Yasmin A., 2012. "Synchronization of bus timetabling," Transportation Research Part B: Methodological, Elsevier, vol. 46(5), pages 599-614.
    9. Rachel C. W. Wong & Tony W. Y. Yuen & Kwok Wah Fung & Janny M. Y. Leung, 2008. "Optimizing Timetable Synchronization for Rail Mass Transit," Transportation Science, INFORMS, vol. 42(1), pages 57-69, February.
    10. Moccia, Luigi & Laporte, Gilbert, 2016. "Improved models for technology choice in a transit corridor with fixed demand," Transportation Research Part B: Methodological, Elsevier, vol. 83(C), pages 245-270.
    11. Strathman, James G. & Hopper, Janet R., 1993. "Empirical analysis of bus transit on-time performance," Transportation Research Part A: Policy and Practice, Elsevier, vol. 27(2), pages 93-100, April.
    12. E. E. Osuna & G. F. Newell, 1972. "Control Strategies for an Idealized Public Transportation System," Transportation Science, INFORMS, vol. 6(1), pages 52-72, February.
    13. Ibarra-Rojas, O.J. & Delgado, F. & Giesen, R. & Muñoz, J.C., 2015. "Planning, operation, and control of bus transport systems: A literature review," Transportation Research Part B: Methodological, Elsevier, vol. 77(C), pages 38-75.
    14. Dessouky, Maged & Hall, Randolph & Zhang, Lei & Singh, Ajay, 2003. "Real-time control of buses for schedule coordination at a terminal," Transportation Research Part A: Policy and Practice, Elsevier, vol. 37(2), pages 145-164, February.
    15. Ceder, A. & Golany, B. & Tal, O., 2001. "Creating bus timetables with maximal synchronization," Transportation Research Part A: Policy and Practice, Elsevier, vol. 35(10), pages 913-928, December.
    16. Xuan, Yiguang & Argote, Juan & Daganzo, Carlos F., 2011. "Dynamic bus holding strategies for schedule reliability: Optimal linear control and performance analysis," Transportation Research Part B: Methodological, Elsevier, vol. 45(10), pages 1831-1845.
    17. James H. Bookbinder & Alain Désilets, 1992. "Transfer Optimization in a Transit Network," Transportation Science, INFORMS, vol. 26(2), pages 106-118, May.
    18. Vansteenwegen, P. & Van Oudheusden, D., 2007. "Decreasing the passenger waiting time for an intercity rail network," Transportation Research Part B: Methodological, Elsevier, vol. 41(4), pages 478-492, May.
    19. Daganzo, Carlos F., 2009. "A headway-based approach to eliminate bus bunching: Systematic analysis and comparisons," Transportation Research Part B: Methodological, Elsevier, vol. 43(10), pages 913-921, December.
    20. Liu, Mengyang & Luo, Zhixing & Lim, Andrew, 2015. "A branch-and-cut algorithm for a realistic dial-a-ride problem," Transportation Research Part B: Methodological, Elsevier, vol. 81(P1), pages 267-288.
    21. Ceder, Avishai & Wilson, Nigel H. M., 1986. "Bus network design," Transportation Research Part B: Methodological, Elsevier, vol. 20(4), pages 331-344, August.
    22. Berrebi, Simon J. & Watkins, Kari E. & Laval, Jorge A., 2015. "A real-time bus dispatching policy to minimize passenger wait on a high frequency route," Transportation Research Part B: Methodological, Elsevier, vol. 81(P2), pages 377-389.
    23. Hernández, Daniel & Muñoz, Juan Carlos & Giesen, Ricardo & Delgado, Felipe, 2015. "Analysis of real-time control strategies in a corridor with multiple bus services," Transportation Research Part B: Methodological, Elsevier, vol. 78(C), pages 83-105.
    24. Meng, Qiang & Wang, Shuaian & Lee, Chung-Yee, 2015. "A tailored branch-and-price approach for a joint tramp ship routing and bunkering problem," Transportation Research Part B: Methodological, Elsevier, vol. 72(C), pages 1-19.
    25. Braekers, Kris & Caris, An & Janssens, Gerrit K., 2014. "Exact and meta-heuristic approach for a general heterogeneous dial-a-ride problem with multiple depots," Transportation Research Part B: Methodological, Elsevier, vol. 67(C), pages 166-186.
    26. Mark D. Hickman, 2001. "An Analytic Stochastic Model for the Transit Vehicle Holding Problem," Transportation Science, INFORMS, vol. 35(3), pages 215-237, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gong, Manlin & Hu, Yucong & Chen, Zhiwei & Li, Xiaopeng, 2021. "Transfer-based customized modular bus system design with passenger-route assignment optimization," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 153(C).
    2. Pei, Mingyang & Lin, Peiqun & Du, Jun & Li, Xiaopeng & Chen, Zhiwei, 2021. "Vehicle dispatching in modular transit networks: A mixed-integer nonlinear programming model," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 147(C).
    3. Ying, Cheng-shuo & Chow, Andy H.F. & Nguyen, Hoa T.M. & Chin, Kwai-Sang, 2022. "Multi-agent deep reinforcement learning for adaptive coordinated metro service operations with flexible train composition," Transportation Research Part B: Methodological, Elsevier, vol. 161(C), pages 36-59.
    4. Li, Shukai & Liu, Ronghui & Yang, Lixing & Gao, Ziyou, 2019. "Robust dynamic bus controls considering delay disturbances and passenger demand uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 123(C), pages 88-109.
    5. Wu, Weitiao & Lin, Yue & Liu, Ronghui & Jin, Wenzhou, 2022. "The multi-depot electric vehicle scheduling problem with power grid characteristics," Transportation Research Part B: Methodological, Elsevier, vol. 155(C), pages 322-347.
    6. Cortés, Cristián E. & Gil, Cristiam & Gschwender, Antonio & Rey, Pablo A., 2023. "The bus synchronization timetabling problem with dwelling times," Transportation Research Part B: Methodological, Elsevier, vol. 174(C).
    7. Wu, Weitiao & Liu, Ronghui & Jin, Wenzhou & Ma, Changxi, 2019. "Stochastic bus schedule coordination considering demand assignment and rerouting of passengers," Transportation Research Part B: Methodological, Elsevier, vol. 121(C), pages 275-303.
    8. Wang, Chao & Ma, Changxi & Xu, Xuecai(Daniel), 2020. "Multi-objective optimization of real-time customized bus routes based on two-stage method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    9. Abdolmaleki, Mojtaba & Masoud, Neda & Yin, Yafeng, 2020. "Transit timetable synchronization for transfer time minimization," Transportation Research Part B: Methodological, Elsevier, vol. 131(C), pages 143-159.
    10. Wu, Weitiao & Liu, Ronghui & Jin, Wenzhou, 2017. "Modelling bus bunching and holding control with vehicle overtaking and distributed passenger boarding behaviour," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 175-197.
    11. Wu, Weitiao & Liu, Ronghui & Jin, Wenzhou & Ma, Changxi, 2019. "Simulation-based robust optimization of limited-stop bus service with vehicle overtaking and dynamics: A response surface methodology," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 130(C), pages 61-81.
    12. Li, Peng & Wu, Weitiao & Pei, Xiangjing, 2023. "A separate modelling approach for short-term bus passenger flow prediction based on behavioural patterns: A hybrid decision tree method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 616(C).
    13. Dai, Zhuang & Liu, Xiaoyue Cathy & Chen, Zhuo & Guo, Renyong & Ma, Xiaolei, 2019. "A predictive headway-based bus-holding strategy with dynamic control point selection: A cooperative game theory approach," Transportation Research Part B: Methodological, Elsevier, vol. 125(C), pages 29-51.
    14. S. Sajikumar & D. Bijulal, 2022. "Zero bunching solution for a local public transport system with multiple-origins bus operation," Public Transport, Springer, vol. 14(3), pages 655-681, October.
    15. Xing, Jiping & Wu, Wei & Cheng, Qixiu & Liu, Ronghui, 2022. "Traffic state estimation of urban road networks by multi-source data fusion: Review and new insights," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 595(C).
    16. Li, Shukai & Liu, Ronghui & Gao, Ziyou & Yang, Lixing, 2021. "Integrated train dwell time regulation and train speed profile generation for automatic train operations on high-density metro lines: A distributed optimal control method," Transportation Research Part B: Methodological, Elsevier, vol. 148(C), pages 82-105.
    17. Yao, Zhihong & Zhao, Bin & Qin, Lingqiao & Jiang, Yangsheng & Ran, Bin & Peng, Bo, 2020. "An efficient heterogeneous platoon dispersion model for real-time traffic signal control," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 539(C).
    18. Liang, Shidong & He, Shengxue & Zhang, Hu & Ma, Minghui, 2021. "Optimal holding time calculation algorithm to improve the reliability of high frequency bus route considering the bus capacity constraint," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    19. Li, Shukai & Zhou, Xuesong & Yang, Lixing & Gao, Ziyou, 2018. "Automatic train regulation of complex metro networks with transfer coordination constraints: A distributed optimal control framework," Transportation Research Part B: Methodological, Elsevier, vol. 117(PA), pages 228-253.
    20. Wu, Weitiao & Li, Peng & Liu, Ronghui & Jin, Wenzhou & Yao, Baozhen & Xie, Yuanqi & Ma, Changxi, 2020. "Predicting peak load of bus routes with supply optimization and scaled Shepard interpolation: A newsvendor model," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 142(C).
    21. Kuo, Yong-Hong & Leung, Janny M.Y. & Yan, Yimo, 2023. "Public transport for smart cities: Recent innovations and future challenges," European Journal of Operational Research, Elsevier, vol. 306(3), pages 1001-1026.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Shukai & Liu, Ronghui & Yang, Lixing & Gao, Ziyou, 2019. "Robust dynamic bus controls considering delay disturbances and passenger demand uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 123(C), pages 88-109.
    2. Wu, Weitiao & Liu, Ronghui & Jin, Wenzhou & Ma, Changxi, 2019. "Stochastic bus schedule coordination considering demand assignment and rerouting of passengers," Transportation Research Part B: Methodological, Elsevier, vol. 121(C), pages 275-303.
    3. Andres, Matthias & Nair, Rahul, 2017. "A predictive-control framework to address bus bunching," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 123-148.
    4. Gkiotsalitis, K. & Alesiani, F., 2019. "Robust timetable optimization for bus lines subject to resource and regulatory constraints," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 128(C), pages 30-51.
    5. Zhang, Shuyang & Lo, Hong K., 2018. "Two-way-looking self-equalizing headway control for bus operations," Transportation Research Part B: Methodological, Elsevier, vol. 110(C), pages 280-301.
    6. Ibarra-Rojas, O.J. & Delgado, F. & Giesen, R. & Muñoz, J.C., 2015. "Planning, operation, and control of bus transport systems: A literature review," Transportation Research Part B: Methodological, Elsevier, vol. 77(C), pages 38-75.
    7. Bian, Bomin & Zhu, Ning & Meng, Qiang, 2023. "Real-time cruising speed design approach for multiline bus systems," Transportation Research Part B: Methodological, Elsevier, vol. 170(C), pages 1-24.
    8. Sánchez-Martínez, G.E. & Koutsopoulos, H.N. & Wilson, N.H.M., 2016. "Real-time holding control for high-frequency transit with dynamics," Transportation Research Part B: Methodological, Elsevier, vol. 83(C), pages 1-19.
    9. Sirmatel, Isik Ilber & Geroliminis, Nikolas, 2018. "Mixed logical dynamical modeling and hybrid model predictive control of public transport operations," Transportation Research Part B: Methodological, Elsevier, vol. 114(C), pages 325-345.
    10. Federico Malucelli & Emanuele Tresoldi, 2019. "Delay and disruption management in local public transportation via real-time vehicle and crew re-scheduling: a case study," Public Transport, Springer, vol. 11(1), pages 1-25, June.
    11. Wu, Weitiao & Liu, Ronghui & Jin, Wenzhou, 2017. "Modelling bus bunching and holding control with vehicle overtaking and distributed passenger boarding behaviour," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 175-197.
    12. Dai, Zhuang & Liu, Xiaoyue Cathy & Chen, Zhuo & Guo, Renyong & Ma, Xiaolei, 2019. "A predictive headway-based bus-holding strategy with dynamic control point selection: A cooperative game theory approach," Transportation Research Part B: Methodological, Elsevier, vol. 125(C), pages 29-51.
    13. Petit, Antoine & Lei, Chao & Ouyang, Yanfeng, 2019. "Multiline Bus Bunching Control via Vehicle Substitution," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 68-86.
    14. Kuo, Yong-Hong & Leung, Janny M.Y. & Yan, Yimo, 2023. "Public transport for smart cities: Recent innovations and future challenges," European Journal of Operational Research, Elsevier, vol. 306(3), pages 1001-1026.
    15. Gkiotsalitis, K. & Cats, O., 2021. "At-stop control measures in public transport: Literature review and research agenda," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 145(C).
    16. Klumpenhouwer, W. & Wirasinghe, S.C., 2018. "Optimal time point configuration of a bus route - A Markovian approach," Transportation Research Part B: Methodological, Elsevier, vol. 117(PA), pages 209-227.
    17. Abdolmaleki, Mojtaba & Masoud, Neda & Yin, Yafeng, 2020. "Transit timetable synchronization for transfer time minimization," Transportation Research Part B: Methodological, Elsevier, vol. 131(C), pages 143-159.
    18. Liu, Tao & Ceder, Avishai (Avi), 2018. "Integrated public transport timetable synchronization and vehicle scheduling with demand assignment: A bi-objective bi-level model using deficit function approach," Transportation Research Part B: Methodological, Elsevier, vol. 117(PB), pages 935-955.
    19. Zhou, Chang & Tian, Qiong & Wang, David Z.W., 2022. "A novel control strategy in mitigating bus bunching: Utilizing real-time information," Transport Policy, Elsevier, vol. 123(C), pages 1-13.
    20. Daganzo, Carlos & Anderson, Paul, 2016. "Coordinating Transit Transfers in Real Time," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt25h4r974, Institute of Transportation Studies, UC Berkeley.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:93:y:2016:i:pa:p:495-519. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.