IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i22p9566-d446572.html
   My bibliography  Save this article

An Optimal Metro Design for Transit Networks in Existing Square Cities Based on Non-Demand Criterion

Author

Listed:
  • Mahmoud Owais

    (Civil Engineering Department, Assiut University, Assiut 71515, Egypt)

  • Abdou S. Ahmed

    (Civil Engineering Department, Assiut University, Assiut 71515, Egypt)

  • Ghada S. Moussa

    (Civil Engineering Department, Assiut University, Assiut 71515, Egypt)

  • Ahmed A. Khalil

    (Civil Engineering Department, Faculty of Engineering at Shoubra, Benha University, Shoubra 11629, Egypt)

Abstract

The overall purpose of this study is to enhance existing transit systems by planning a new underground metro network. The design of a new metro network in the existing cities is a complex problem. Therefore, in this research, the study idea arises from the prerequisites to get out of conventional metro network design to develop a future scheme for forecasting an optimal metro network for these existing cities. Two models are proposed to design metro transit networks based on an optimal cost–benefit ratio. Model 1 presents a grid metro network, and Model 2 presents the ring-radial metro network. The proposed methodology introduces a non-demand criterion for transit system design. The new network design aims to increase the overall transit system connectivity by minimizing passenger transfers through the transit network between origin and destination. An existing square city is presented as a case study for both models. It includes twenty-five traffic analysis zones, and thirty-six new metro stations are selected at the existing street intersection. TransCAD software is used as a base for stations and the metro network lines to coordinate all these data. A passenger transfer counting algorithm is then proposed to determine the number of needed transfers between stations from each origin to each destination. Thus, a passenger Origin/Destination transfer matrix is created via the NetBeans program to help in determining the number of transfers required to complete the trips on both proposed networks. Results show that Model 2 achieves the maximum cost–benefit ratio (CBR) of the transit network that increases 41% more than CBR of Model 1. Therefore, it is found that the ring radial network is a more optimal network to existing square cities than the grid network according to overall network connectivity.

Suggested Citation

  • Mahmoud Owais & Abdou S. Ahmed & Ghada S. Moussa & Ahmed A. Khalil, 2020. "An Optimal Metro Design for Transit Networks in Existing Square Cities Based on Non-Demand Criterion," Sustainability, MDPI, vol. 12(22), pages 1-28, November.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:22:p:9566-:d:446572
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/22/9566/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/22/9566/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xin-Hui Zhou & Shui-Long Shen & Ye-Shuang Xu & An-Nan Zhou, 2019. "Analysis of Production Safety in the Construction Industry of China in 2018," Sustainability, MDPI, vol. 11(17), pages 1-14, August.
    2. Wei Fan & Randy B. Machemehl, 2008. "A Tabu Search Based Heuristic Method for the Transit Route Network Design Problem," Lecture Notes in Economics and Mathematical Systems, in: Mark Hickman & Pitu Mirchandani & Stefan Voß (ed.), Computer-aided Systems in Public Transport, pages 387-408, Springer.
    3. Changjie Zhan & Martin De Jong & Hans De Bruijn, 2018. "Funding Sustainable Cities: A Comparative Study of Sino-Singapore Tianjin Eco-City and Shenzhen International Low-Carbon City," Sustainability, MDPI, vol. 10(11), pages 1-15, November.
    4. Liang, Jinpeng & Wu, Jianjun & Gao, Ziyou & Sun, Huijun & Yang, Xin & Lo, Hong K., 2019. "Bus transit network design with uncertainties on the basis of a metro network: A two-step model framework," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 115-138.
    5. Yiyo Kuo, 2014. "Design method using hybrid of line-type and circular-type routes for transit network system optimization," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(2), pages 600-613, July.
    6. Na Dong & Yanting Fu & Feng Xiong & Lujie Li & Yibin Ao & Igor Martek, 2019. "Sustainable Construction Project Management (SCPM) Evaluation—A Case Study of the Guangzhou Metro Line-7, PR China," Sustainability, MDPI, vol. 11(20), pages 1-17, October.
    7. Rehborn, Hubert & Klenov, Sergey L. & Palmer, Jochen, 2011. "An empirical study of common traffic congestion features based on traffic data measured in the USA, the UK, and Germany," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(23), pages 4466-4485.
    8. Curtin, Kevin M. & Biba, Steve, 2011. "The Transit Route Arc-Node Service Maximization problem," European Journal of Operational Research, Elsevier, vol. 208(1), pages 46-56, January.
    9. Janet Currie & Reed Walker, 2011. "Traffic Congestion and Infant Health: Evidence from E-ZPass," American Economic Journal: Applied Economics, American Economic Association, vol. 3(1), pages 65-90, January.
    10. Canca, David & De-Los-Santos, Alicia & Laporte, Gilbert & Mesa, Juan A., 2019. "Integrated Railway Rapid Transit Network Design and Line Planning problem with maximum profit," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 127(C), pages 1-30.
    11. L. Escudero & S. Muñoz, 2009. "An approach for solving a modification of the extended rapid transit network design problem," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 17(2), pages 320-334, December.
    12. Raffaello Furlan & Asmaa AL-Mohannadi, 2020. "An Urban Regeneration Planning Scheme for the Souq Waqif Heritage Site of Doha," Sustainability, MDPI, vol. 12(19), pages 1-19, September.
    13. David Canca & Alicia De-Los-Santos & Gilbert Laporte & Juan A. Mesa, 2016. "A general rapid network design, line planning and fleet investment integrated model," Annals of Operations Research, Springer, vol. 246(1), pages 127-144, November.
    14. Badia, Hugo & Estrada, Miquel & Robusté, Francesc, 2014. "Competitive transit network design in cities with radial street patterns," Transportation Research Part B: Methodological, Elsevier, vol. 59(C), pages 161-181.
    15. Daganzo, Carlos F., 2010. "Structure of competitive transit networks," Transportation Research Part B: Methodological, Elsevier, vol. 44(4), pages 434-446, May.
    16. Liqiao Ning & Peng Zhao & Wenkai Xu & Ke Qiao, 2018. "Transfer Coordination for Metro Networks during the Start- or End-of-Service Period," Mathematical Problems in Engineering, Hindawi, vol. 2018, pages 1-10, July.
    17. Mandl, Christoph E., 1980. "Evaluation and optimization of urban public transportation networks," European Journal of Operational Research, Elsevier, vol. 5(6), pages 396-404, December.
    18. Shafahi, Yousef & Khani, Alireza, 2010. "A practical model for transfer optimization in a transit network: Model formulations and solutions," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(6), pages 377-389, July.
    19. James H. Bookbinder & Alain Désilets, 1992. "Transfer Optimization in a Transit Network," Transportation Science, INFORMS, vol. 26(2), pages 106-118, May.
    20. Bent Flyvbjerg & Nils Bruzelius & Bert van Wee, 2013. "Comparison of Capital Costs per Route-Kilometre in Urban Rail," Papers 1303.6569, arXiv.org.
    21. Shaoying Li & Xiaoping Liu & Zhigang Li & Zhifeng Wu & Zijun Yan & Yimin Chen & Feng Gao, 2018. "Spatial and Temporal Dynamics of Urban Expansion along the Guangzhou–Foshan Inter-City Rail Transit Corridor, China," Sustainability, MDPI, vol. 10(3), pages 1-18, February.
    22. Chen, Haoyu & Gu, Weihua & Cassidy, Michael J. & Daganzo, Carlos F., 2015. "Optimal transit service atop ring-radial and grid street networks: A continuum approximation design method and comparisons," Transportation Research Part B: Methodological, Elsevier, vol. 81(P3), pages 755-774.
    23. Chen, Jingxu & Liu, Zhiyuan & Wang, Shuaian & Chen, Xuewu, 2018. "Continuum approximation modeling of transit network design considering local route service and short-turn strategy," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 119(C), pages 165-188.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abdullah Alshehri & Mahmoud Owais & Jayadev Gyani & Mishal H. Aljarbou & Saleh Alsulamy, 2023. "Residual Neural Networks for Origin–Destination Trip Matrix Estimation from Traffic Sensor Information," Sustainability, MDPI, vol. 15(13), pages 1-21, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Javier Durán-Micco & Pieter Vansteenwegen, 2022. "A survey on the transit network design and frequency setting problem," Public Transport, Springer, vol. 14(1), pages 155-190, March.
    2. Hugo Badia, 2020. "Comparison of Bus Network Structures in Face of Urban Dispersion for a Ring-Radial City," Networks and Spatial Economics, Springer, vol. 20(1), pages 233-271, March.
    3. Chen, Peng (Will) & Nie, Yu (Marco), 2018. "Optimal design of demand adaptive paired-line hybrid transit: Case of radial route structure," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 110(C), pages 71-89.
    4. Luo, Sida & Nie, Yu (Marco), 2020. "On the role of route choice modeling in transit sketchy design," Transportation Research Part A: Policy and Practice, Elsevier, vol. 136(C), pages 223-243.
    5. Calabrò, Giovanni & Araldo, Andrea & Oh, Simon & Seshadri, Ravi & Inturri, Giuseppe & Ben-Akiva, Moshe, 2023. "Adaptive transit design: Optimizing fixed and demand responsive multi-modal transportation via continuous approximation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 171(C).
    6. Masing, Berenike & Lindner, Niels & Borndörfer, Ralf, 2022. "The price of symmetric line plans in the Parametric City," Transportation Research Part B: Methodological, Elsevier, vol. 166(C), pages 419-443.
    7. Fournier, Nicholas, 2021. "Hybrid pedestrian and transit priority zoning policies in an urban street network: Evaluating network traffic flow impacts with analytical approximation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 152(C), pages 254-274.
    8. Luo, Sida & Nie, Yu (Marco), 2020. "Paired-line hybrid transit design considering spatial heterogeneity," Transportation Research Part B: Methodological, Elsevier, vol. 132(C), pages 320-339.
    9. Fan, Wenbo & Mei, Yu & Gu, Weihua, 2018. "Optimal design of intersecting bimodal transit networks in a grid city," Transportation Research Part B: Methodological, Elsevier, vol. 111(C), pages 203-226.
    10. Jin, Zhihua & Schmöcker, Jan-Dirk & Maadi, Saeed, 2019. "On the interaction between public transport demand, service quality and fare for social welfare optimisation," Research in Transportation Economics, Elsevier, vol. 76(C).
    11. Dakic, Igor & Leclercq, Ludovic & Menendez, Monica, 2021. "On the optimization of the bus network design: An analytical approach based on the three-dimensional macroscopic fundamental diagram," Transportation Research Part B: Methodological, Elsevier, vol. 149(C), pages 393-417.
    12. Liu, Yining & Ouyang, Yanfeng, 2021. "Mobility service design via joint optimization of transit networks and demand-responsive services," Transportation Research Part B: Methodological, Elsevier, vol. 151(C), pages 22-41.
    13. Amirgholy, Mahyar & Shahabi, Mehrdad & Gao, H. Oliver, 2017. "Optimal design of sustainable transit systems in congested urban networks: A macroscopic approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 103(C), pages 261-285.
    14. Badia, Hugo & Estrada, Miquel & Robusté, Francesc, 2016. "Bus network structure and mobility pattern: A monocentric analytical approach on a grid street layout," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 37-56.
    15. Orlando Barraza & Miquel Estrada, 2021. "Battery Electric Bus Network: Efficient Design and Cost Comparison of Different Powertrains," Sustainability, MDPI, vol. 13(9), pages 1-28, April.
    16. Fielbaum, Andrés & Jara-Diaz, Sergio & Gschwender, Antonio, 2021. "Lines spacing and scale economies in the strategic design of transit systems in a parametric city," Research in Transportation Economics, Elsevier, vol. 90(C).
    17. Luo, Sida & Nie, Yu (Marco), 2019. "Impact of ride-pooling on the nature of transit network design," Transportation Research Part B: Methodological, Elsevier, vol. 129(C), pages 175-192.
    18. Andrés Fielbaum & Sergio Jara-Diaz & Antonio Gschwender, 2017. "A Parametric Description of Cities for the Normative Analysis of Transport Systems," Networks and Spatial Economics, Springer, vol. 17(2), pages 343-365, June.
    19. Madanat, Samer & Horvath , Arpad & Mao, Chao & Cheng, Han, 2016. "Potential Greenhouse Gas Emission Reductions from Optimizing Urban Transit Networks," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt25x1b693, Institute of Transportation Studies, UC Berkeley.
    20. Giovanni Calabro' & Andrea Araldo & Simon Oh & Ravi Seshadri & Giuseppe Inturri & Moshe Ben-Akiva, 2021. "Adaptive Transit Design: Optimizing Fixed and Demand Responsive Multi-Modal Transportation via Continuous Approximation," Papers 2112.14748, arXiv.org, revised Jan 2023.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:22:p:9566-:d:446572. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.