IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v93y2016icp316-333.html
   My bibliography  Save this article

The maxisum and maximin-maxisum HAZMAT routing problems

Author

Listed:
  • Bronfman, Andrés
  • Marianov, Vladimir
  • Paredes-Belmar, Germán
  • Lüer-Villagra, Armin

Abstract

We design routes for transportation of hazardous materials (HAZMAT) in urban areas, with multiple origin-destination pairs. First, we introduce the maxisum HAZMAT routing problem, which maximizes the sum of the population-weighted distances from vulnerable centers to their closest point on the routes. Secondly, the maximin-maxisum HAZMAT routing problem trades-off maxisum versus the population-weighted distance from the route to its closest center. We propose efficient IP formulations for both NP-Hard problems, as well as a polynomial heuristic that reaches gaps below 0.54% in a few seconds on the real case in the city of Santiago, Chile.

Suggested Citation

  • Bronfman, Andrés & Marianov, Vladimir & Paredes-Belmar, Germán & Lüer-Villagra, Armin, 2016. "The maxisum and maximin-maxisum HAZMAT routing problems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 93(C), pages 316-333.
  • Handle: RePEc:eee:transe:v:93:y:2016:i:c:p:316-333
    DOI: 10.1016/j.tre.2016.06.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554515301575
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2016.06.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Patrice Marcotte & Anne Mercier & Gilles Savard & Vedat Verter, 2009. "Toll Policies for Mitigating Hazardous Materials Transport Risk," Transportation Science, INFORMS, vol. 43(2), pages 228-243, May.
    2. Samuel D. Brody & B. Mitchell Peck & Wesley E. Highfield, 2004. "Examining Localized Patterns of Air Quality Perception in Texas: A Spatial and Statistical Analysis," Risk Analysis, John Wiley & Sons, vol. 24(6), pages 1561-1574, December.
    3. Bronfman, Andrés & Marianov, Vladimir & Paredes-Belmar, Germán & Lüer-Villagra, Armin, 2015. "The maximin HAZMAT routing problem," European Journal of Operational Research, Elsevier, vol. 241(1), pages 15-27.
    4. Erkut, Erhan & Neuman, Susan, 1989. "Analytical models for locating undesirable facilities," European Journal of Operational Research, Elsevier, vol. 40(3), pages 275-291, June.
    5. Ram Gopalan & Krishna S. Kolluri & Rajan Batta & Mark H. Karwan, 1990. "Modeling Equity of Risk in the Transportation of Hazardous Materials," Operations Research, INFORMS, vol. 38(6), pages 961-973, December.
    6. Rongrong Li & Yee Leung, 2011. "Multi-objective route planning for dangerous goods using compromise programming," Journal of Geographical Systems, Springer, vol. 13(3), pages 249-271, September.
    7. Susan J. Elliott & Donald C. Cole & Paul Krueger & Nancy Voorberg & Sarah Wakefield, 1999. "The Power of Perception: Health Risk Attributed to Air Pollution in anUrban Industrial Neighbourhood," Risk Analysis, John Wiley & Sons, vol. 19(4), pages 621-634, August.
    8. Emanuel Melachrinoudis, 2011. "The Location of Undesirable Facilities," International Series in Operations Research & Management Science, in: H. A. Eiselt & Vladimir Marianov (ed.), Foundations of Location Analysis, chapter 0, pages 207-239, Springer.
    9. Erhan Erkut & Armann Ingolfsson, 2000. "Catastrophe Avoidance Models for Hazardous Materials Route Planning," Transportation Science, INFORMS, vol. 34(2), pages 165-179, May.
    10. Hanif D. Sherali & Laora D. Brizendine & Theodore S. Glickman & Shivaram Subramanian, 1997. "Low Probability---High Consequence Considerations in Routing Hazardous Material Shipments," Transportation Science, INFORMS, vol. 31(3), pages 237-251, August.
    11. Bahar Y. Kara & Vedat Verter, 2004. "Designing a Road Network for Hazardous Materials Transportation," Transportation Science, INFORMS, vol. 38(2), pages 188-196, May.
    12. Richard L. Church & Robert S. Garfinkel, 1978. "Locating an Obnoxious Facility on a Network," Transportation Science, INFORMS, vol. 12(2), pages 107-118, May.
    13. Erhan Erkut & Vedat Verter, 1998. "Modeling of Transport Risk for Hazardous Materials," Operations Research, INFORMS, vol. 46(5), pages 625-642, October.
    14. Jiashan Wang & Yingying Kang & Changhyun Kwon & Rajan Batta, 2012. "Dual Toll Pricing for Hazardous Materials Transport with Linear Delay," Networks and Spatial Economics, Springer, vol. 12(1), pages 147-165, March.
    15. Vedat Verter & Bahar Y. Kara, 2008. "A Path-Based Approach for Hazmat Transport Network Design," Management Science, INFORMS, vol. 54(1), pages 29-40, January.
    16. Laurel Lindner-Dutton & Rajan Batta & Mark H. Karwan, 1991. "Equitable Sequencing of a Given Set of Hazardous Materials Shipments," Transportation Science, INFORMS, vol. 25(2), pages 124-137, May.
    17. Dell'Olmo, Paolo & Gentili, Monica & Scozzari, Andrea, 2005. "On finding dissimilar Pareto-optimal paths," European Journal of Operational Research, Elsevier, vol. 162(1), pages 70-82, April.
    18. Wijeratne, Ajith B. & Turnquist, Mark A. & Mirchandani, Pitu B., 1993. "Multiobjective routing of hazardous materials in stochastic networks," European Journal of Operational Research, Elsevier, vol. 65(1), pages 33-43, February.
    19. George List & Pitu Mirchandani, 1991. "An Integrated Network/Planar Multiobjective Model for Routing and Siting for Hazardous Materials and Wastes," Transportation Science, INFORMS, vol. 25(2), pages 146-156, May.
    20. Honghua Jin & Rajan Batta & Mark H. Karwan, 1996. "On the Analysis of Two New Models for Transporting Hazardous Materials," Operations Research, INFORMS, vol. 44(5), pages 710-723, October.
    21. Rajan Batta & Samuel S. Chiu, 1988. "Optimal Obnoxious Paths on a Network: Transportation of Hazardous Materials," Operations Research, INFORMS, vol. 36(1), pages 84-92, February.
    22. Honghua Jin & Rajan Batta, 1997. "Objectives Derived form Viewing Hazmat Shipments as a Sequence of Independent Bernoulli Trials," Transportation Science, INFORMS, vol. 31(3), pages 252-261, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aurelija Burinskienė, 2021. "Designing a Multi-Stage Transport System Serving e-Commerce Activity," Sustainability, MDPI, vol. 13(11), pages 1-19, May.
    2. Mohri, Seyed Sina & Asgari, Nasrin & Zanjirani Farahani, Reza & Bourlakis, Michael & Laker, Benjamin, 2020. "Fairness in hazmat routing-scheduling: A bi-objective Stackelberg game," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 140(C).
    3. Mohri, Seyed Sina & Mohammadi, Mehrdad & Gendreau, Michel & Pirayesh, Amir & Ghasemaghaei, Ali & Salehi, Vahid, 2022. "Hazardous material transportation problems: A comprehensive overview of models and solution approaches," European Journal of Operational Research, Elsevier, vol. 302(1), pages 1-38.
    4. Xiaoyan Jia & Ruichun He & Chunmin Zhang & Huo Chai, 2018. "A Bi-Level Programming Model of Liquefied Petroleum Gas Transportation Operation for Urban Road Network by Period-Security," Sustainability, MDPI, vol. 10(12), pages 1-20, December.
    5. Zhang, Meng & Wang, Nengmin & He, Zhengwen & Jiang, Bin, 2021. "Vehicle routing optimization for hazmat shipments considering catastrophe avoidance and failed edges," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 150(C).
    6. Wu, Weitiao & Ma, Jian & Liu, Ronghui & Jin, Wenzhou, 2022. "Multi-class hazmat distribution network design with inventory and superimposed risks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 161(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohri, Seyed Sina & Mohammadi, Mehrdad & Gendreau, Michel & Pirayesh, Amir & Ghasemaghaei, Ali & Salehi, Vahid, 2022. "Hazardous material transportation problems: A comprehensive overview of models and solution approaches," European Journal of Operational Research, Elsevier, vol. 302(1), pages 1-38.
    2. Bronfman, Andrés & Marianov, Vladimir & Paredes-Belmar, Germán & Lüer-Villagra, Armin, 2015. "The maximin HAZMAT routing problem," European Journal of Operational Research, Elsevier, vol. 241(1), pages 15-27.
    3. Fontaine, Pirmin & Crainic, Teodor Gabriel & Gendreau, Michel & Minner, Stefan, 2020. "Population-based risk equilibration for the multimode hazmat transport network design problem," European Journal of Operational Research, Elsevier, vol. 284(1), pages 188-200.
    4. Garrido, Rodrigo A. & Bronfman, Andrés C., 2017. "Equity and social acceptability in multiple hazardous materials routing through urban areas," Transportation Research Part A: Policy and Practice, Elsevier, vol. 102(C), pages 244-260.
    5. Hosseini, S. Davod & Verma, Manish, 2018. "Conditional value-at-risk (CVaR) methodology to optimal train configuration and routing of rail hazmat shipments," Transportation Research Part B: Methodological, Elsevier, vol. 110(C), pages 79-103.
    6. Kumar, Anand & Roy, Debjit & Verter, Vedat & Sharma, Dheeraj, 2018. "Integrated fleet mix and routing decision for hazmat transportation: A developing country perspective," European Journal of Operational Research, Elsevier, vol. 264(1), pages 225-238.
    7. Liping Liu & Jiaming Li & Lei Zhou & Tijun Fan & Shuxia Li, 2021. "Research on Route Optimization of Hazardous Materials Transportation Considering Risk Equity," Sustainability, MDPI, vol. 13(16), pages 1-19, August.
    8. P. Daniel Wright & Matthew J. Liberatore & Robert L. Nydick, 2006. "A Survey of Operations Research Models and Applications in Homeland Security," Interfaces, INFORMS, vol. 36(6), pages 514-529, December.
    9. Ke, Ginger Y. & Zhang, Huiwen & Bookbinder, James H., 2020. "A dual toll policy for maintaining risk equity in hazardous materials transportation with fuzzy incident rate," International Journal of Production Economics, Elsevier, vol. 227(C).
    10. Rongrong Li & Yee Leung, 2011. "Multi-objective route planning for dangerous goods using compromise programming," Journal of Geographical Systems, Springer, vol. 13(3), pages 249-271, September.
    11. Fontaine, Pirmin & Minner, Stefan, 2018. "Benders decomposition for the Hazmat Transport Network Design Problem," European Journal of Operational Research, Elsevier, vol. 267(3), pages 996-1002.
    12. Paul Berglund & Changhyun Kwon, 2014. "Robust Facility Location Problem for Hazardous Waste Transportation," Networks and Spatial Economics, Springer, vol. 14(1), pages 91-116, March.
    13. Szeto, W.Y. & Farahani, R.Z. & Sumalee, Agachai, 2017. "Link-based multi-class hazmat routing-scheduling problem: A multiple demon approach," European Journal of Operational Research, Elsevier, vol. 261(1), pages 337-354.
    14. Zajac, Sandra & Huber, Sandra, 2021. "Objectives and methods in multi-objective routing problems: a survey and classification scheme," European Journal of Operational Research, Elsevier, vol. 290(1), pages 1-25.
    15. Ditta, A. & Figueroa, O. & Galindo, G. & Yie-Pinedo, R., 2019. "A review on research in transportation of hazardous materials," Socio-Economic Planning Sciences, Elsevier, vol. 68(C).
    16. Zhang, Meng & Wang, Nengmin & He, Zhengwen & Jiang, Bin, 2021. "Vehicle routing optimization for hazmat shipments considering catastrophe avoidance and failed edges," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 150(C).
    17. Fang, Kan & Ke, Ginger Y. & Verma, Manish, 2017. "A routing and scheduling approach to rail transportation of hazardous materials with demand due dates," European Journal of Operational Research, Elsevier, vol. 261(1), pages 154-168.
    18. Lucio Bianco & Massimiliano Caramia & Stefano Giordani & Veronica Piccialli, 2016. "A Game-Theoretic Approach for Regulating Hazmat Transportation," Transportation Science, INFORMS, vol. 50(2), pages 424-438, May.
    19. Yingying Kang & Rajan Batta & Changhyun Kwon, 2014. "Value-at-Risk model for hazardous material transportation," Annals of Operations Research, Springer, vol. 222(1), pages 361-387, November.
    20. Esfandeh, Tolou & Kwon, Changhyun & Batta, Rajan, 2016. "Regulating hazardous materials transportation by dual toll pricing," Transportation Research Part B: Methodological, Elsevier, vol. 83(C), pages 20-35.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:93:y:2016:i:c:p:316-333. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.