IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v91y2016icp306-324.html
   My bibliography  Save this article

Marrying supply chain sustainability and resilience: A match made in heaven

Author

Listed:
  • Fahimnia, Behnam
  • Jabbarzadeh, Armin

Abstract

Sustainable supply chain management has become an integral part of corporate strategy for virtually every industry. However, little is understood about the broader impacts of sustainability practices on the capacity of the supply chain to tolerate disruptions. This article aims to explore the sustainability–resilience relationship at the supply chain design level. A multi-objective optimization model featuring a sustainability performance scoring method and a stochastic fuzzy goal programming approach is developed that can be used to perform a dynamic sustainability tradeoff analysis and design a “resiliently sustainable” supply chain. Important managerial and practical insights are obtained from an empirical case study.

Suggested Citation

  • Fahimnia, Behnam & Jabbarzadeh, Armin, 2016. "Marrying supply chain sustainability and resilience: A match made in heaven," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 91(C), pages 306-324.
  • Handle: RePEc:eee:transe:v:91:y:2016:i:c:p:306-324
    DOI: 10.1016/j.tre.2016.02.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554516000296
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2016.02.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Amid, A. & Ghodsypour, S.H. & O'Brien, C., 2006. "Fuzzy multiobjective linear model for supplier selection in a supply chain," International Journal of Production Economics, Elsevier, vol. 104(2), pages 394-407, December.
    2. Marcus Brandenburg, 2015. "Low carbon supply chain configuration for a new product – a goal programming approach," International Journal of Production Research, Taylor & Francis Journals, vol. 53(21), pages 6588-6610, November.
    3. Akoz, Onur & Petrovic, Dobrila, 2007. "A fuzzy goal programming method with imprecise goal hierarchy," European Journal of Operational Research, Elsevier, vol. 181(3), pages 1427-1433, September.
    4. Tingting Cui & Yanfeng Ouyang & Zuo-Jun Max Shen, 2010. "Reliable Facility Location Design Under the Risk of Disruptions," Operations Research, INFORMS, vol. 58(4-part-1), pages 998-1011, August.
    5. Tang, Christopher S. & Davarzani, Hoda & Sarkis, Joseph, 2015. "Quantitative models for managing supply chain risks: A reviewAuthor-Name: Fahimnia, Behnam," European Journal of Operational Research, Elsevier, vol. 247(1), pages 1-15.
    6. Reyes Levalle, Rodrigo & Nof, Shimon Y., 2015. "Resilience by teaming in supply network formation and re-configuration," International Journal of Production Economics, Elsevier, vol. 160(C), pages 80-93.
    7. Jabbarzadeh, Armin & Fahimnia, Behnam & Seuring, Stefan, 2014. "Dynamic supply chain network design for the supply of blood in disasters: A robust model with real world application," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 70(C), pages 225-244.
    8. Hassini, Elkafi & Surti, Chirag & Searcy, Cory, 2012. "A literature review and a case study of sustainable supply chains with a focus on metrics," International Journal of Production Economics, Elsevier, vol. 140(1), pages 69-82.
    9. Li, Xiaopeng & Ouyang, Yanfeng, 2010. "A continuum approximation approach to reliable facility location design under correlated probabilistic disruptions," Transportation Research Part B: Methodological, Elsevier, vol. 44(4), pages 535-548, May.
    10. Sawik, Tadeusz, 2013. "Selection of resilient supply portfolio under disruption risks," Omega, Elsevier, vol. 41(2), pages 259-269.
    11. Sawik, Tadeusz, 2015. "On the fair optimization of cost and customer service level in a supply chain under disruption risks," Omega, Elsevier, vol. 53(C), pages 58-66.
    12. Mozart Menezes & O. Berman & D. Krass, 2007. "Facility Reliability Issues in Network p-Median Problems: Strategic Centralization and Co-location Effects," Post-Print halshs-00170396, HAL.
    13. Derissen, Sandra & Quaas, Martin F. & Baumgärtner, Stefan, 2011. "The relationship between resilience and sustainability of ecological-economic systems," Ecological Economics, Elsevier, vol. 70(6), pages 1121-1128, April.
    14. Baghalian, Atefeh & Rezapour, Shabnam & Farahani, Reza Zanjirani, 2013. "Robust supply chain network design with service level against disruptions and demand uncertainties: A real-life case," European Journal of Operational Research, Elsevier, vol. 227(1), pages 199-215.
    15. Medal, Hugh R. & Pohl, Edward A. & Rossetti, Manuel D., 2014. "A multi-objective integrated facility location-hardening model: Analyzing the pre- and post-disruption tradeoff," European Journal of Operational Research, Elsevier, vol. 237(1), pages 257-270.
    16. Hernandez, Ivan & Emmanuel Ramirez-Marquez, Jose & Rainwater, Chase & Pohl, Edward & Medal, Hugh, 2014. "Robust facility location: Hedging against failures," Reliability Engineering and System Safety, Elsevier, vol. 123(C), pages 73-80.
    17. Sawik, Tadeusz, 2014. "Joint supplier selection and scheduling of customer orders under disruption risks: Single vs. dual sourcing," Omega, Elsevier, vol. 43(C), pages 83-95.
    18. Chen, Liang-Hsuan & Tsai, Feng-Chou, 2001. "Fuzzy goal programming with different importance and priorities," European Journal of Operational Research, Elsevier, vol. 133(3), pages 548-556, September.
    19. Chen, Chen-Tung & Lin, Ching-Torng & Huang, Sue-Fn, 2006. "A fuzzy approach for supplier evaluation and selection in supply chain management," International Journal of Production Economics, Elsevier, vol. 102(2), pages 289-301, August.
    20. Heckmann, Iris & Comes, Tina & Nickel, Stefan, 2015. "A critical review on supply chain risk – Definition, measure and modeling," Omega, Elsevier, vol. 52(C), pages 119-132.
    21. Baroud, Hiba & Barker, Kash & Ramirez-Marquez, Jose E. & Rocco S., Claudio M., 2014. "Importance measures for inland waterway network resilience," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 62(C), pages 55-67.
    22. Chen, Qi & Li, Xiaopeng & Ouyang, Yanfeng, 2011. "Joint inventory-location problem under the risk of probabilistic facility disruptions," Transportation Research Part B: Methodological, Elsevier, vol. 45(7), pages 991-1003, August.
    23. repec:lib:000cis:v:1:y:2013:i:2:p:72-79 is not listed on IDEAS
    24. Cui, Tingting & Ouyang, Yanfeng & Shen, Zuo-Jun Max J, 2010. "Reliable Facility Location Design under the Risk of Disruptions," University of California Transportation Center, Working Papers qt5sh2c7pw, University of California Transportation Center.
    25. Zuo-Jun Max Shen & Roger Lezhou Zhan & Jiawei Zhang, 2011. "The Reliable Facility Location Problem: Formulations, Heuristics, and Approximation Algorithms," INFORMS Journal on Computing, INFORMS, vol. 23(3), pages 470-482, August.
    26. Sawik, Tadeusz, 2011. "Selection of supply portfolio under disruption risks," Omega, Elsevier, vol. 39(2), pages 194-208, April.
    27. Aouni, Belaid & Kettani, Ossama, 2001. "Goal programming model: A glorious history and a promising future," European Journal of Operational Research, Elsevier, vol. 133(2), pages 225-231, January.
    28. Peng, Peng & Snyder, Lawrence V. & Lim, Andrew & Liu, Zuli, 2011. "Reliable logistics networks design with facility disruptions," Transportation Research Part B: Methodological, Elsevier, vol. 45(8), pages 1190-1211, September.
    29. O’Hanley, Jesse R. & Scaparra, M. Paola & García, Sergio, 2013. "Probability chains: A general linearization technique for modeling reliability in facility location and related problems," European Journal of Operational Research, Elsevier, vol. 230(1), pages 63-75.
    30. Losada, Chaya & Scaparra, M. Paola & O’Hanley, Jesse R., 2012. "Optimizing system resilience: A facility protection model with recovery time," European Journal of Operational Research, Elsevier, vol. 217(3), pages 519-530.
    31. Perrings, Charles, 2006. "Resilience and sustainable development," Environment and Development Economics, Cambridge University Press, vol. 11(4), pages 417-427, August.
    32. Chaabane, A. & Ramudhin, A. & Paquet, M., 2012. "Design of sustainable supply chains under the emission trading scheme," International Journal of Production Economics, Elsevier, vol. 135(1), pages 37-49.
    33. Selim, Hasan & Araz, Ceyhun & Ozkarahan, Irem, 2008. "Collaborative production-distribution planning in supply chain: A fuzzy goal programming approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 44(3), pages 396-419, May.
    34. John M. Mulvey & Robert J. Vanderbei & Stavros A. Zenios, 1995. "Robust Optimization of Large-Scale Systems," Operations Research, INFORMS, vol. 43(2), pages 264-281, April.
    35. Brandenburg, Marcus & Govindan, Kannan & Sarkis, Joseph & Seuring, Stefan, 2014. "Quantitative models for sustainable supply chain management: Developments and directions," European Journal of Operational Research, Elsevier, vol. 233(2), pages 299-312.
    36. Tang, Christopher S. & Zhou, Sean, 2012. "Research advances in environmentally and socially sustainable operations," European Journal of Operational Research, Elsevier, vol. 223(3), pages 585-594.
    37. Lawrence V. Snyder & Mark S. Daskin, 2005. "Reliability Models for Facility Location: The Expected Failure Cost Case," Transportation Science, INFORMS, vol. 39(3), pages 400-416, August.
    38. Fahimnia, Behnam & Sarkis, Joseph & Choudhary, Alok & Eshragh, Ali, 2015. "Tactical supply chain planning under a carbon tax policy scheme: A case study," International Journal of Production Economics, Elsevier, vol. 164(C), pages 206-215.
    39. Bruce C. Arntzen & Gerald G. Brown & Terry P. Harrison & Linda L. Trafton, 1995. "Global Supply Chain Management at Digital Equipment Corporation," Interfaces, INFORMS, vol. 25(1), pages 69-93, February.
    40. Zakeri, Atefe & Dehghanian, Farzad & Fahimnia, Behnam & Sarkis, Joseph, 2015. "Carbon pricing versus emissions trading: A supply chain planning perspective," International Journal of Production Economics, Elsevier, vol. 164(C), pages 197-205.
    41. Pishvaee, M.S. & Razmi, J. & Torabi, S.A., 2014. "An accelerated Benders decomposition algorithm for sustainable supply chain network design under uncertainty: A case study of medical needle and syringe supply chain," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 67(C), pages 14-38.
    42. Fahimnia, Behnam & Sarkis, Joseph & Davarzani, Hoda, 2015. "Green supply chain management: A review and bibliometric analysis," International Journal of Production Economics, Elsevier, vol. 162(C), pages 101-114.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fahimnia, Behnam & Jabbarzadeh, Armin & Sarkis, Joseph, 2018. "Greening versus resilience: A supply chain design perspective," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 119(C), pages 129-148.
    2. Jabbarzadeh, Armin & Fahimnia, Behnam & Sheu, Jiuh-Biing & Moghadam, Hani Shahmoradi, 2016. "Designing a supply chain resilient to major disruptions and supply/demand interruptions," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 121-149.
    3. Zarrinpoor, Naeme & Fallahnezhad, Mohammad Saber & Pishvaee, Mir Saman, 2018. "The design of a reliable and robust hierarchical health service network using an accelerated Benders decomposition algorithm," European Journal of Operational Research, Elsevier, vol. 265(3), pages 1013-1032.
    4. Aldrighetti, Riccardo & Battini, Daria & Ivanov, Dmitry & Zennaro, Ilenia, 2021. "Costs of resilience and disruptions in supply chain network design models: A review and future research directions," International Journal of Production Economics, Elsevier, vol. 235(C).
    5. Azad, Nader & Hassini, Elkafi, 2019. "Recovery strategies from major supply disruptions in single and multiple sourcing networks," European Journal of Operational Research, Elsevier, vol. 275(2), pages 481-501.
    6. Weijun Xie & Yanfeng Ouyang & Sze Chun Wong, 2016. "Reliable Location-Routing Design Under Probabilistic Facility Disruptions," Transportation Science, INFORMS, vol. 50(3), pages 1128-1138, August.
    7. An, Shi & Cui, Na & Li, Xiaopeng & Ouyang, Yanfeng, 2013. "Location planning for transit-based evacuation under the risk of service disruptions," Transportation Research Part B: Methodological, Elsevier, vol. 54(C), pages 1-16.
    8. An, Shi & Cui, Na & Bai, Yun & Xie, Weijun & Chen, Mingliu & Ouyang, Yanfeng, 2015. "Reliable emergency service facility location under facility disruption, en-route congestion and in-facility queuing," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 82(C), pages 199-216.
    9. Ivanov, Dmitry & Pavlov, Alexander & Dolgui, Alexandre & Pavlov, Dmitry & Sokolov, Boris, 2016. "Disruption-driven supply chain (re)-planning and performance impact assessment with consideration of pro-active and recovery policies," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 90(C), pages 7-24.
    10. Nader Azad & Elkafi Hassini, 2019. "A Benders Decomposition Method for Designing Reliable Supply Chain Networks Accounting for Multimitigation Strategies and Demand Losses," Transportation Science, INFORMS, vol. 53(5), pages 1287-1312, September.
    11. S.A. Torabi & J. Namdar & S.M. Hatefi & F. Jolai, 2016. "An enhanced possibilistic programming approach for reliable closed-loop supply chain network design," International Journal of Production Research, Taylor & Francis Journals, vol. 54(5), pages 1358-1387, March.
    12. An, Yu & Zeng, Bo & Zhang, Yu & Zhao, Long, 2014. "Reliable p-median facility location problem: two-stage robust models and algorithms," Transportation Research Part B: Methodological, Elsevier, vol. 64(C), pages 54-72.
    13. Zhang, Ying & Snyder, Lawrence V. & Qi, Mingyao & Miao, Lixin, 2016. "A heterogeneous reliable location model with risk pooling under supply disruptions," Transportation Research Part B: Methodological, Elsevier, vol. 83(C), pages 151-178.
    14. Cheng, Chun & Qi, Mingyao & Zhang, Ying & Rousseau, Louis-Martin, 2018. "A two-stage robust approach for the reliable logistics network design problem," Transportation Research Part B: Methodological, Elsevier, vol. 111(C), pages 185-202.
    15. Mengshi Lu & Lun Ran & Zuo-Jun Max Shen, 2015. "Reliable Facility Location Design Under Uncertain Correlated Disruptions," Manufacturing & Service Operations Management, INFORMS, vol. 17(4), pages 445-455, October.
    16. Albareda-Sambola, Maria & Landete, Mercedes & Monge, Juan F. & Sainz-Pardo, José L., 2017. "Introducing capacities in the location of unreliable facilities," European Journal of Operational Research, Elsevier, vol. 259(1), pages 175-188.
    17. Luohao Tang & Cheng Zhu & Zaili Lin & Jianmai Shi & Weiming Zhang, 2016. "Reliable Facility Location Problem with Facility Protection," PLOS ONE, Public Library of Science, vol. 11(9), pages 1-24, September.
    18. Asefeh Hasani Goodarzi & Seyed Hessameddin Zegordi & Gülgün Alpan & Isa Nakhai Kamalabadi & Ali Husseinzadeh Kashan, 2021. "Reliable cross-docking location problem under the risk of disruptions," Operational Research, Springer, vol. 21(3), pages 1569-1612, September.
    19. Nayeri, Sina & Sazvar, Zeinab & Heydari, Jafar, 2022. "A global-responsive supply chain considering sustainability and resiliency: Application in the medical devices industry," Socio-Economic Planning Sciences, Elsevier, vol. 82(PB).
    20. Zhixue Liu & Shukun Wang & Yanfeng Ouyang, 2017. "Reliable Biomass Supply Chain Design under Feedstock Seasonality and Probabilistic Facility Disruptions," Energies, MDPI, vol. 10(11), pages 1-18, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:91:y:2016:i:c:p:306-324. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.