IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v119y2018icp129-148.html
   My bibliography  Save this article

Greening versus resilience: A supply chain design perspective

Author

Listed:
  • Fahimnia, Behnam
  • Jabbarzadeh, Armin
  • Sarkis, Joseph

Abstract

This paper investigates the extent to which supply chain greening and buttressing (building robustness) strategies are supportive or conflicting. A supply chain design model is introduced which uses an environmental performance scoring approach and a robustness measure to explore the relationship between greening and buttressing. Potential tradeoffs to develop robustly green and greenly robust supply chains are evaluated. Data from a multinational apparel company is used. Results show both greening and buttressing can be costly, green supply chains are most sensitive to disruption, robust supply chains have strong long term benefits, and buttressing a green supply chain is a good investment.

Suggested Citation

  • Fahimnia, Behnam & Jabbarzadeh, Armin & Sarkis, Joseph, 2018. "Greening versus resilience: A supply chain design perspective," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 119(C), pages 129-148.
  • Handle: RePEc:eee:transe:v:119:y:2018:i:c:p:129-148
    DOI: 10.1016/j.tre.2018.09.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554517308141
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2018.09.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shiva Zokaee & Armin Jabbarzadeh & Behnam Fahimnia & Seyed Jafar Sadjadi, 2017. "Robust supply chain network design: an optimization model with real world application," Annals of Operations Research, Springer, vol. 257(1), pages 15-44, October.
    2. Tingting Cui & Yanfeng Ouyang & Zuo-Jun Max Shen, 2010. "Reliable Facility Location Design Under the Risk of Disruptions," Operations Research, INFORMS, vol. 58(4-part-1), pages 998-1011, August.
    3. Michael Lim & Mark S. Daskin & Achal Bassamboo & Sunil Chopra, 2010. "A facility reliability problem: Formulation, properties, and algorithm," Naval Research Logistics (NRL), John Wiley & Sons, vol. 57(1), pages 58-70, February.
    4. Jabbarzadeh, Armin & Fahimnia, Behnam & Seuring, Stefan, 2014. "Dynamic supply chain network design for the supply of blood in disasters: A robust model with real world application," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 70(C), pages 225-244.
    5. Grimm, Jörg H. & Hofstetter, Joerg S. & Sarkis, Joseph, 2014. "Critical factors for sub-supplier management: A sustainable food supply chains perspective," International Journal of Production Economics, Elsevier, vol. 152(C), pages 159-173.
    6. Li, Xiaopeng & Ouyang, Yanfeng, 2010. "A continuum approximation approach to reliable facility location design under correlated probabilistic disruptions," Transportation Research Part B: Methodological, Elsevier, vol. 44(4), pages 535-548, May.
    7. Gutierrez, Genaro J. & Kouvelis, Panagiotis & Kurawarwala, Abbas A., 1996. "A robustness approach to uncapacitated network design problems," European Journal of Operational Research, Elsevier, vol. 94(2), pages 362-376, October.
    8. Li, Qingwei & Savachkin, Alex, 2013. "A heuristic approach to the design of fortified distribution networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 50(C), pages 138-148.
    9. Mozart Menezes & O. Berman & D. Krass, 2007. "Facility Reliability Issues in Network p-Median Problems: Strategic Centralization and Co-location Effects," Post-Print halshs-00170396, HAL.
    10. Baghalian, Atefeh & Rezapour, Shabnam & Farahani, Reza Zanjirani, 2013. "Robust supply chain network design with service level against disruptions and demand uncertainties: A real-life case," European Journal of Operational Research, Elsevier, vol. 227(1), pages 199-215.
    11. Medal, Hugh R. & Pohl, Edward A. & Rossetti, Manuel D., 2014. "A multi-objective integrated facility location-hardening model: Analyzing the pre- and post-disruption tradeoff," European Journal of Operational Research, Elsevier, vol. 237(1), pages 257-270.
    12. Hernandez, Ivan & Emmanuel Ramirez-Marquez, Jose & Rainwater, Chase & Pohl, Edward & Medal, Hugh, 2014. "Robust facility location: Hedging against failures," Reliability Engineering and System Safety, Elsevier, vol. 123(C), pages 73-80.
    13. Fahimnia, Behnam & Jabbarzadeh, Armin, 2016. "Marrying supply chain sustainability and resilience: A match made in heaven," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 91(C), pages 306-324.
    14. Chen, Qi & Li, Xiaopeng & Ouyang, Yanfeng, 2011. "Joint inventory-location problem under the risk of probabilistic facility disruptions," Transportation Research Part B: Methodological, Elsevier, vol. 45(7), pages 991-1003, August.
    15. Cui, Tingting & Ouyang, Yanfeng & Shen, Zuo-Jun Max J, 2010. "Reliable Facility Location Design under the Risk of Disruptions," University of California Transportation Center, Working Papers qt5sh2c7pw, University of California Transportation Center.
    16. Zuo-Jun Max Shen & Roger Lezhou Zhan & Jiawei Zhang, 2011. "The Reliable Facility Location Problem: Formulations, Heuristics, and Approximation Algorithms," INFORMS Journal on Computing, INFORMS, vol. 23(3), pages 470-482, August.
    17. Azevedo, Susana G. & Govindan, Kannan & Carvalho, Helena & Cruz-Machado, V., 2011. "GResilient index to assess the greenness and resilience of the automotive supply chain," Discussion Papers on Economics 8/2011, University of Southern Denmark, Department of Economics.
    18. Peng, Peng & Snyder, Lawrence V. & Lim, Andrew & Liu, Zuli, 2011. "Reliable logistics networks design with facility disruptions," Transportation Research Part B: Methodological, Elsevier, vol. 45(8), pages 1190-1211, September.
    19. O’Hanley, Jesse R. & Scaparra, M. Paola & García, Sergio, 2013. "Probability chains: A general linearization technique for modeling reliability in facility location and related problems," European Journal of Operational Research, Elsevier, vol. 230(1), pages 63-75.
    20. Losada, Chaya & Scaparra, M. Paola & O’Hanley, Jesse R., 2012. "Optimizing system resilience: A facility protection model with recovery time," European Journal of Operational Research, Elsevier, vol. 217(3), pages 519-530.
    21. Chaabane, A. & Ramudhin, A. & Paquet, M., 2012. "Design of sustainable supply chains under the emission trading scheme," International Journal of Production Economics, Elsevier, vol. 135(1), pages 37-49.
    22. Zahiri, Behzad & Zhuang, Jun & Mohammadi, Mehrdad, 2017. "Toward an integrated sustainable-resilient supply chain: A pharmaceutical case study," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 103(C), pages 109-142.
    23. Brandenburg, Marcus & Govindan, Kannan & Sarkis, Joseph & Seuring, Stefan, 2014. "Quantitative models for sustainable supply chain management: Developments and directions," European Journal of Operational Research, Elsevier, vol. 233(2), pages 299-312.
    24. Tang, Christopher S. & Zhou, Sean, 2012. "Research advances in environmentally and socially sustainable operations," European Journal of Operational Research, Elsevier, vol. 223(3), pages 585-594.
    25. Lawrence V. Snyder & Mark S. Daskin, 2005. "Reliability Models for Facility Location: The Expected Failure Cost Case," Transportation Science, INFORMS, vol. 39(3), pages 400-416, August.
    26. Armin Jabbarzadeh & Behnam Fahimnia & Fatemeh Sabouhi, 2018. "Resilient and sustainable supply chain design: sustainability analysis under disruption risks," International Journal of Production Research, Taylor & Francis Journals, vol. 56(17), pages 5945-5968, September.
    27. Jabbarzadeh, Armin & Fahimnia, Behnam & Sheu, Jiuh-Biing & Moghadam, Hani Shahmoradi, 2016. "Designing a supply chain resilient to major disruptions and supply/demand interruptions," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 121-149.
    28. Kouvelis, Panagiotis & Kurawarwala, Abbas A. & Gutierrez, Genaro J., 1992. "Algorithms for robust single and multiple period layout planning for manufacturing systems," European Journal of Operational Research, Elsevier, vol. 63(2), pages 287-303, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Luis Francisco López-Castro & Elyn L. Solano-Charris, 2021. "Integrating Resilience and Sustainability Criteria in the Supply Chain Network Design. A Systematic Literature Review," Sustainability, MDPI, vol. 13(19), pages 1-26, September.
    2. Olfati, Marjan & Paydar, Mohammad Mahdi, 2023. "Towards a responsive-sustainable-resilient tea supply chain network design under uncertainty using big data," Socio-Economic Planning Sciences, Elsevier, vol. 88(C).
    3. Manu Sharma & Sudhanshu Joshi & Sunil Luthra & Anil Kumar, 2022. "Managing disruptions and risks amidst COVID-19 outbreaks: role of blockchain technology in developing resilient food supply chains," Operations Management Research, Springer, vol. 15(1), pages 268-281, June.
    4. Amin Mahmoudi & Saad Ahmed Javed & Abbas Mardani, 2022. "Gresilient supplier selection through Fuzzy Ordinal Priority Approach: decision-making in post-COVID era," Operations Management Research, Springer, vol. 15(1), pages 208-232, June.
    5. Mao Zheng & Ningning Cui & Yibin Zhang & Fangfang Zhang & Victor Shi, 2023. "Inventory Policies and Supply Chain Coordination under Logistics Route Disruption Risks," Sustainability, MDPI, vol. 15(13), pages 1-20, June.
    6. George Mutugu Mwangi & Stella Despoudi & Oscar Rodriguez Espindola & Konstantina Spanaki & Thanos Papadopoulos, 2022. "A planetary boundaries perspective on the sustainability: resilience relationship in the Kenyan tea supply chain," Annals of Operations Research, Springer, vol. 319(1), pages 661-695, December.
    7. Vikash Sharma & Rakesh D. Raut & Sachin Kumar Mangla & Balkrishna E. Narkhede & Sunil Luthra & Ravindra Gokhale, 2021. "A systematic literature review to integrate lean, agile, resilient, green and sustainable paradigms in the supply chain management," Business Strategy and the Environment, Wiley Blackwell, vol. 30(2), pages 1191-1212, February.
    8. Hu, Hui & Xu, Jiajun & Liu, Mengqi & Lim, Ming K., 2023. "Vaccine supply chain management: An intelligent system utilizing blockchain, IoT and machine learning," Journal of Business Research, Elsevier, vol. 156(C).
    9. Ivanov, Dmitry, 2020. "Predicting the impacts of epidemic outbreaks on global supply chains: A simulation-based analysis on the coronavirus outbreak (COVID-19/SARS-CoV-2) case," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 136(C).
    10. Dmitry Ivanov, 2022. "Viable supply chain model: integrating agility, resilience and sustainability perspectives—lessons from and thinking beyond the COVID-19 pandemic," Annals of Operations Research, Springer, vol. 319(1), pages 1411-1431, December.
    11. Zhitao Xu & Shaligram Pokharel & Adel Elomri, 2023. "An eco-friendly closed-loop supply chain facing demand and carbon price uncertainty," Annals of Operations Research, Springer, vol. 320(2), pages 1041-1067, January.
    12. El Baz, Jamal & Ruel, Salomée, 2021. "Can supply chain risk management practices mitigate the disruption impacts on supply chains’ resilience and robustness? Evidence from an empirical survey in a COVID-19 outbreak era," International Journal of Production Economics, Elsevier, vol. 233(C).
    13. Wei Zhou & Haixia Wang & Victor Shi & Xiding Chen, 2022. "A Decision Model for Free-Floating Car-Sharing Providers for Sustainable and Resilient Supply Chains," Sustainability, MDPI, vol. 14(13), pages 1-18, July.
    14. Thorey S Thorisdottir & Lara Johannsdottir, 2020. "Corporate Social Responsibility Influencing Sustainability within the Fashion Industry. A Systematic Review," Sustainability, MDPI, vol. 12(21), pages 1-64, November.
    15. Marta Negri & Enrico Cagno & Claudia Colicchia & Joseph Sarkis, 2021. "Integrating sustainability and resilience in the supply chain: A systematic literature review and a research agenda," Business Strategy and the Environment, Wiley Blackwell, vol. 30(7), pages 2858-2886, November.
    16. Antonio Zavala-Alcívar & María-José Verdecho & Juan-José Alfaro-Saiz, 2020. "A Conceptual Framework to Manage Resilience and Increase Sustainability in the Supply Chain," Sustainability, MDPI, vol. 12(16), pages 1-38, August.
    17. Li, Feng & Du, Timon C. & Wei, Ying, 2021. "With whom should I work? Ratings consideration for partner selection in a P2P supply chain network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    18. Yang, Yuxiang & Goodarzi, Shadi & Jabbarzadeh, Armin & Fahimnia, Behnam, 2022. "In-house production and outsourcing under different emissions reduction regulations: An equilibrium decision model for global supply chains," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 157(C).
    19. Alireza Parsa Rad & Mohammad Khalilzadeh & Sayyid Ali Banihashemi & Darko Božanić & Aleksandar Milić & Goran Ćirović, 2024. "Supplier Selection in Downstream Oil and Gas and Petrochemicals with the Fuzzy BWM and Gray COCOSO Methods Considering Sustainability Criteria and Uncertainty Conditions," Sustainability, MDPI, vol. 16(2), pages 1-18, January.
    20. Ozgur Kabadurmus & Mehmet S. Erdogan, 2020. "Sustainable, multimodal and reliable supply chain design," Annals of Operations Research, Springer, vol. 292(1), pages 47-70, September.
    21. Ren, Da & Guo, Rui & Lan, Yanfei & Shang, Changjing, 2021. "Shareholding strategies for selling green products on online platforms in a two-echelon supply chain," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 149(C).
    22. Hosseini, Seyedmohsen & Ivanov, Dmitry & Dolgui, Alexandre, 2019. "Review of quantitative methods for supply chain resilience analysis," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 125(C), pages 285-307.
    23. Goldbeck, Nils & Angeloudis, Panagiotis & Ochieng, Washington, 2020. "Optimal supply chain resilience with consideration of failure propagation and repair logistics," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 133(C).
    24. Aldrighetti, Riccardo & Battini, Daria & Ivanov, Dmitry & Zennaro, Ilenia, 2021. "Costs of resilience and disruptions in supply chain network design models: A review and future research directions," International Journal of Production Economics, Elsevier, vol. 235(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fahimnia, Behnam & Jabbarzadeh, Armin, 2016. "Marrying supply chain sustainability and resilience: A match made in heaven," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 91(C), pages 306-324.
    2. Aldrighetti, Riccardo & Battini, Daria & Ivanov, Dmitry & Zennaro, Ilenia, 2021. "Costs of resilience and disruptions in supply chain network design models: A review and future research directions," International Journal of Production Economics, Elsevier, vol. 235(C).
    3. Jabbarzadeh, Armin & Fahimnia, Behnam & Sheu, Jiuh-Biing & Moghadam, Hani Shahmoradi, 2016. "Designing a supply chain resilient to major disruptions and supply/demand interruptions," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 121-149.
    4. Azad, Nader & Hassini, Elkafi, 2019. "Recovery strategies from major supply disruptions in single and multiple sourcing networks," European Journal of Operational Research, Elsevier, vol. 275(2), pages 481-501.
    5. Nader Azad & Elkafi Hassini, 2019. "A Benders Decomposition Method for Designing Reliable Supply Chain Networks Accounting for Multimitigation Strategies and Demand Losses," Transportation Science, INFORMS, vol. 53(5), pages 1287-1312, September.
    6. Weijun Xie & Yanfeng Ouyang & Sze Chun Wong, 2016. "Reliable Location-Routing Design Under Probabilistic Facility Disruptions," Transportation Science, INFORMS, vol. 50(3), pages 1128-1138, August.
    7. Luohao Tang & Cheng Zhu & Zaili Lin & Jianmai Shi & Weiming Zhang, 2016. "Reliable Facility Location Problem with Facility Protection," PLOS ONE, Public Library of Science, vol. 11(9), pages 1-24, September.
    8. Zarrinpoor, Naeme & Fallahnezhad, Mohammad Saber & Pishvaee, Mir Saman, 2018. "The design of a reliable and robust hierarchical health service network using an accelerated Benders decomposition algorithm," European Journal of Operational Research, Elsevier, vol. 265(3), pages 1013-1032.
    9. An, Shi & Cui, Na & Li, Xiaopeng & Ouyang, Yanfeng, 2013. "Location planning for transit-based evacuation under the risk of service disruptions," Transportation Research Part B: Methodological, Elsevier, vol. 54(C), pages 1-16.
    10. Mengshi Lu & Lun Ran & Zuo-Jun Max Shen, 2015. "Reliable Facility Location Design Under Uncertain Correlated Disruptions," Manufacturing & Service Operations Management, INFORMS, vol. 17(4), pages 445-455, October.
    11. An, Shi & Cui, Na & Bai, Yun & Xie, Weijun & Chen, Mingliu & Ouyang, Yanfeng, 2015. "Reliable emergency service facility location under facility disruption, en-route congestion and in-facility queuing," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 82(C), pages 199-216.
    12. Asefeh Hasani Goodarzi & Seyed Hessameddin Zegordi & Gülgün Alpan & Isa Nakhai Kamalabadi & Ali Husseinzadeh Kashan, 2021. "Reliable cross-docking location problem under the risk of disruptions," Operational Research, Springer, vol. 21(3), pages 1569-1612, September.
    13. An, Yu & Zeng, Bo & Zhang, Yu & Zhao, Long, 2014. "Reliable p-median facility location problem: two-stage robust models and algorithms," Transportation Research Part B: Methodological, Elsevier, vol. 64(C), pages 54-72.
    14. Yun Hui Lin & Yuan Wang & Loo Hay Lee & Ek Peng Chew, 2021. "Robust facility location with structural complexity and demand uncertainty," Flexible Services and Manufacturing Journal, Springer, vol. 33(2), pages 485-507, June.
    15. Zhang, Ying & Snyder, Lawrence V. & Qi, Mingyao & Miao, Lixin, 2016. "A heterogeneous reliable location model with risk pooling under supply disruptions," Transportation Research Part B: Methodological, Elsevier, vol. 83(C), pages 151-178.
    16. Cheng, Chun & Qi, Mingyao & Zhang, Ying & Rousseau, Louis-Martin, 2018. "A two-stage robust approach for the reliable logistics network design problem," Transportation Research Part B: Methodological, Elsevier, vol. 111(C), pages 185-202.
    17. Albareda-Sambola, Maria & Landete, Mercedes & Monge, Juan F. & Sainz-Pardo, José L., 2017. "Introducing capacities in the location of unreliable facilities," European Journal of Operational Research, Elsevier, vol. 259(1), pages 175-188.
    18. Yu, Guodong & Zhang, Jie, 2018. "Multi-dual decomposition solution for risk-averse facility location problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 116(C), pages 70-89.
    19. Nader Azad & Georgios Saharidis & Hamid Davoudpour & Hooman Malekly & Seyed Yektamaram, 2013. "Strategies for protecting supply chain networks against facility and transportation disruptions: an improved Benders decomposition approach," Annals of Operations Research, Springer, vol. 210(1), pages 125-163, November.
    20. Dmitry Ivanov & Alexandre Dolgui & Boris Sokolov & Marina Ivanova, 2017. "Literature review on disruption recovery in the supply chain," International Journal of Production Research, Taylor & Francis Journals, vol. 55(20), pages 6158-6174, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:119:y:2018:i:c:p:129-148. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.