IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v98y2017icp42-61.html
   My bibliography  Save this article

On the stability of stationary states in general road networks

Author

Listed:
  • Jin, Wen-Long

Abstract

In [Jin, W.-L., 2015. On the existence of stationary states in general road networks. Transportation Research Part B 81, 917–929.], with a discrete map in critical demand levels, it was proved that there exist stationary states for the kinematic wave model of general road networks with constant origin demands, route choice proportions, and destination supplies. In this study we further examine the stability property of stationary states with the same map, and the results will help us to understand the long-term trend of a network traffic system. We first review a network kinematic wave model and properties of stationary states on a link, define the criticality of junctions in stationary states, and discuss information propagation in stationary states on links and junctions. We then present the map and examine information propagation in the map. We apply the map to analytically study the stability of stationary states on ring roads and diverge-merge networks with circular information propagation and compare them with results obtained from the Poincaré map [Jin, W.-L., 2013. Stability and bifurcation in network traffic flow: A Poincaré map approach. Transportation Research Part B 57, 191–208]. We further study the stability property of general stationary states in a grid network. We find that the stability of fixed points of the map is the same as that of stationary states in a network, and the new approach is more general than the Poincaré map approach. We conclude the study with future directions and implications.

Suggested Citation

  • Jin, Wen-Long, 2017. "On the stability of stationary states in general road networks," Transportation Research Part B: Methodological, Elsevier, vol. 98(C), pages 42-61.
  • Handle: RePEc:eee:transb:v:98:y:2017:i:c:p:42-61
    DOI: 10.1016/j.trb.2016.12.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261516300479
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2016.12.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Oded Galor, 2007. "Discrete Dynamical Systems," Springer Books, Springer, edition 1, number 978-3-540-36776-5, November.
    2. Jin, Wen-Long, 2012. "A kinematic wave theory of multi-commodity network traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 46(8), pages 1000-1022.
    3. Paul I. Richards, 1956. "Shock Waves on the Highway," Operations Research, INFORMS, vol. 4(1), pages 42-51, February.
    4. MERCHANT, Deepak K. & NEMHAUSER, George L., 1978. "Optimality conditions for a dynamic traffic assignment model," LIDAM Reprints CORE 345, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    5. Jin, Wen-Long, 2012. "The traffic statics problem in a road network," Transportation Research Part B: Methodological, Elsevier, vol. 46(10), pages 1360-1373.
    6. Daganzo, Carlos F., 1995. "The cell transmission model, part II: Network traffic," Transportation Research Part B: Methodological, Elsevier, vol. 29(2), pages 79-93, April.
    7. Newell, G. F., 1993. "A simplified theory of kinematic waves in highway traffic, part I: General theory," Transportation Research Part B: Methodological, Elsevier, vol. 27(4), pages 281-287, August.
    8. Yang, Hai & Yagar, Sam, 1995. "Traffic assignment and signal control in saturated road networks," Transportation Research Part A: Policy and Practice, Elsevier, vol. 29(2), pages 125-139, March.
    9. Jin, Wen-Long, 2013. "Stability and bifurcation in network traffic flow: A Poincaré map approach," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 191-208.
    10. Jin, Wen-Long & Gan, Qi-Jian & Gayah, Vikash V., 2013. "A kinematic wave approach to traffic statics and dynamics in a double-ring network," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 114-131.
    11. Yan, Hai & Lam, William H. K., 1996. "Optimal road tolls under conditions of queueing and congestion," Transportation Research Part A: Policy and Practice, Elsevier, vol. 30(5), pages 319-332, September.
    12. Jin, Wen-Long, 2015. "On the existence of stationary states in general road networks," Transportation Research Part B: Methodological, Elsevier, vol. 81(P3), pages 917-929.
    13. Daganzo, Carlos F., 2007. "Urban gridlock: Macroscopic modeling and mitigation approaches," Transportation Research Part B: Methodological, Elsevier, vol. 41(1), pages 49-62, January.
    14. Deepak K. Merchant & George L. Nemhauser, 1978. "Optimality Conditions for a Dynamic Traffic Assignment Model," Transportation Science, INFORMS, vol. 12(3), pages 200-207, August.
    15. Newell, G. F., 1993. "A simplified theory of kinematic waves in highway traffic, part III: Multi-destination flows," Transportation Research Part B: Methodological, Elsevier, vol. 27(4), pages 305-313, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. (Sean) Qian, Zhen & Li, Jia & Li, Xiaopeng & Zhang, Michael & Wang, Haizhong, 2017. "Modeling heterogeneous traffic flow: A pragmatic approach," Transportation Research Part B: Methodological, Elsevier, vol. 99(C), pages 183-204.
    2. Yan, Qinglong & Sun, Zhe & Gan, Qijian & Jin, Wen-Long, 2018. "Automatic identification of near-stationary traffic states based on the PELT changepoint detection," Transportation Research Part B: Methodological, Elsevier, vol. 108(C), pages 39-54.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jin, Wen-Long, 2015. "On the existence of stationary states in general road networks," Transportation Research Part B: Methodological, Elsevier, vol. 81(P3), pages 917-929.
    2. Yan, Qinglong & Sun, Zhe & Gan, Qijian & Jin, Wen-Long, 2018. "Automatic identification of near-stationary traffic states based on the PELT changepoint detection," Transportation Research Part B: Methodological, Elsevier, vol. 108(C), pages 39-54.
    3. Jin, Wen-Long & Gan, Qi-Jian & Gayah, Vikash V., 2013. "A kinematic wave approach to traffic statics and dynamics in a double-ring network," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 114-131.
    4. Jin, Wen-Long, 2015. "Continuous formulations and analytical properties of the link transmission model," Transportation Research Part B: Methodological, Elsevier, vol. 74(C), pages 88-103.
    5. Wen-Long Jin, 2021. "A Link Queue Model of Network Traffic Flow," Transportation Science, INFORMS, vol. 55(2), pages 436-455, March.
    6. Jin, Wen-Long, 2015. "Point queue models: A unified approach," Transportation Research Part B: Methodological, Elsevier, vol. 77(C), pages 1-16.
    7. Smits, Erik-Sander & Bliemer, Michiel C.J. & Pel, Adam J. & van Arem, Bart, 2015. "A family of macroscopic node models," Transportation Research Part B: Methodological, Elsevier, vol. 74(C), pages 20-39.
    8. Jin, Wen-Long & Gan, Qi-Jian & Lebacque, Jean-Patrick, 2015. "A kinematic wave theory of capacity drop," Transportation Research Part B: Methodological, Elsevier, vol. 81(P1), pages 316-329.
    9. Wang, Peirong (Slade) & Li, Pengfei (Taylor) & Chowdhury, Farzana R. & Zhang, Li & Zhou, Xuesong, 2020. "A mixed integer programming formulation and scalable solution algorithms for traffic control coordination across multiple intersections based on vehicle space-time trajectories," Transportation Research Part B: Methodological, Elsevier, vol. 134(C), pages 266-304.
    10. Jin, Wen-Long, 2012. "The traffic statics problem in a road network," Transportation Research Part B: Methodological, Elsevier, vol. 46(10), pages 1360-1373.
    11. Jin, Wen-Long, 2018. "Unifiable multi-commodity kinematic wave model," Transportation Research Part B: Methodological, Elsevier, vol. 117(PB), pages 639-659.
    12. Jiang, Chenming & Bhat, Chandra R. & Lam, William H.K., 2020. "A bibliometric overview of Transportation Research Part B: Methodological in the past forty years (1979–2019)," Transportation Research Part B: Methodological, Elsevier, vol. 138(C), pages 268-291.
    13. Jin, Wen-Long, 2013. "Stability and bifurcation in network traffic flow: A Poincaré map approach," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 191-208.
    14. Friesz, Terry L. & Han, Ke & Neto, Pedro A. & Meimand, Amir & Yao, Tao, 2013. "Dynamic user equilibrium based on a hydrodynamic model," Transportation Research Part B: Methodological, Elsevier, vol. 47(C), pages 102-126.
    15. Raadsen, Mark P.H. & Bliemer, Michiel C.J. & Bell, Michael G.H., 2016. "An efficient and exact event-based algorithm for solving simplified first order dynamic network loading problems in continuous time," Transportation Research Part B: Methodological, Elsevier, vol. 92(PB), pages 191-210.
    16. Daganzo, Carlos F., 2011. "On the macroscopic stability of freeway traffic," Transportation Research Part B: Methodological, Elsevier, vol. 45(5), pages 782-788, June.
    17. Jin, Wen-Long, 2013. "A multi-commodity Lighthill–Whitham–Richards model of lane-changing traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 361-377.
    18. Long, Jiancheng & Szeto, W.Y. & Huang, Hai-Jun & Gao, Ziyou, 2015. "An intersection-movement-based stochastic dynamic user optimal route choice model for assessing network performance," Transportation Research Part B: Methodological, Elsevier, vol. 74(C), pages 182-217.
    19. Daganzo, Carlos F., 2010. "On the Stability of Freeway Traffic," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt4vf597r5, Institute of Transportation Studies, UC Berkeley.
    20. Jin, Wen-Long & Laval, Jorge, 2018. "Bounded acceleration traffic flow models: A unified approach," Transportation Research Part B: Methodological, Elsevier, vol. 111(C), pages 1-18.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:98:y:2017:i:c:p:42-61. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.