IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v77y2015icp1-16.html
   My bibliography  Save this article

Point queue models: A unified approach

Author

Listed:
  • Jin, Wen-Long

Abstract

In transportation and other types of facilities, various queues arise when the demands of service are higher than the supplies, and many point and fluid queue models have been proposed to study such queueing systems. However, there has been no unified approach to deriving such models, analyzing their relationships and properties, and extending them for networks. In this paper, we derive point queue models as limits of two link-based queueing model: the link transmission model and a link queue model. With two definitions for demand and supply of a point queue, we present four point queue models, four approximate models, and their discrete versions. We discuss the properties of these models, including equivalence, well-definedness, smoothness, and queue spillback, both analytically and with numerical examples. We then analytically solve Vickrey’s point queue model and stationary states in various models. We demonstrate that all existing point and fluid queue models in the literature are special cases of those derived from the link-based queueing models. Such a unified approach leads to systematic methods for studying the queueing process at a point facility and will also be helpful for studies on stochastic queues as well as networks of queues.

Suggested Citation

  • Jin, Wen-Long, 2015. "Point queue models: A unified approach," Transportation Research Part B: Methodological, Elsevier, vol. 77(C), pages 1-16.
  • Handle: RePEc:eee:transb:v:77:y:2015:i:c:p:1-16
    DOI: 10.1016/j.trb.2015.02.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261515000430
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2015.02.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Jun & Fujiwara, Okitsugu & Kawakami, Shogo, 2000. "A reactive dynamic user equilibrium model in network with queues," Transportation Research Part B: Methodological, Elsevier, vol. 34(8), pages 605-624, November.
    2. Han, Ke & Friesz, Terry L. & Yao, Tao, 2013. "A partial differential equation formulation of Vickrey’s bottleneck model, part I: Methodology and theoretical analysis," Transportation Research Part B: Methodological, Elsevier, vol. 49(C), pages 55-74.
    3. Omar Drissi-Kaïtouni & Abdelhamid Hameda-Benchekroun, 1992. "A Dynamic Traffic Assignment Model and a Solution Algorithm," Transportation Science, INFORMS, vol. 26(2), pages 119-128, May.
    4. Jin, Wen-Long, 2012. "A kinematic wave theory of multi-commodity network traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 46(8), pages 1000-1022.
    5. Paul I. Richards, 1956. "Shock Waves on the Highway," Operations Research, INFORMS, vol. 4(1), pages 42-51, February.
    6. Jin, Wen-Long, 2012. "The traffic statics problem in a road network," Transportation Research Part B: Methodological, Elsevier, vol. 46(10), pages 1360-1373.
    7. Ban, Xuegang (Jeff) & Pang, Jong-Shi & Liu, Henry X. & Ma, Rui, 2012. "Continuous-time point-queue models in dynamic network loading," Transportation Research Part B: Methodological, Elsevier, vol. 46(3), pages 360-380.
    8. Daganzo, Carlos F., 1995. "The cell transmission model, part II: Network traffic," Transportation Research Part B: Methodological, Elsevier, vol. 29(2), pages 79-93, April.
    9. Vickrey, William S, 1969. "Congestion Theory and Transport Investment," American Economic Review, American Economic Association, vol. 59(2), pages 251-260, May.
    10. Osorio, Carolina & Flötteröd, Gunnar & Bierlaire, Michel, 2011. "Dynamic network loading: A stochastic differentiable model that derives link state distributions," Transportation Research Part B: Methodological, Elsevier, vol. 45(9), pages 1410-1423.
    11. Newell, G. F., 1993. "A simplified theory of kinematic waves in highway traffic, part I: General theory," Transportation Research Part B: Methodological, Elsevier, vol. 27(4), pages 281-287, August.
    12. Armbruster, D. & de Beer, C. & Freitag, M. & Jagalski, T. & Ringhofer, C., 2006. "Autonomous control of production networks using a pheromone approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 363(1), pages 104-114.
    13. Han, Ke & Friesz, Terry L. & Yao, Tao, 2013. "A partial differential equation formulation of Vickrey’s bottleneck model, part II: Numerical analysis and computation," Transportation Research Part B: Methodological, Elsevier, vol. 49(C), pages 75-93.
    14. Newell, G. F., 1993. "A simplified theory of kinematic waves in highway traffic, part III: Multi-destination flows," Transportation Research Part B: Methodological, Elsevier, vol. 27(4), pages 305-313, August.
    15. Jin, Wen-Long, 2015. "Continuous formulations and analytical properties of the link transmission model," Transportation Research Part B: Methodological, Elsevier, vol. 74(C), pages 88-103.
    16. Kuwahara, Masao & Akamatsu, Takashi, 1997. "Decomposition of the reactive dynamic assignments with queues for a many-to-many origin-destination pattern," Transportation Research Part B: Methodological, Elsevier, vol. 31(1), pages 1-10, February.
    17. Ma, Rui & Ban, Xuegang (Jeff) & Pang, Jong-Shi, 2014. "Continuous-time dynamic system optimum for single-destination traffic networks with queue spillbacks," Transportation Research Part B: Methodological, Elsevier, vol. 68(C), pages 98-122.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fiems, Dieter & Prabhu, Balakrishna & De Turck, Koen, 2019. "Travel times, rational queueing and the macroscopic fundamental diagram of traffic flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 412-421.
    2. Akamatsu, Takashi & Wada, Kentaro & Iryo, Takamasa & Hayashi, Shunsuke, 2021. "A new look at departure time choice equilibrium models with heterogeneous users," Transportation Research Part B: Methodological, Elsevier, vol. 148(C), pages 152-182.
    3. Zhu, Juanxiu & Hu, Lu & Jiang, Yangsheng & Khattak, Afaq, 2017. "Circulation network design for urban rail transit station using a PH(n)/PH(n)/C/C queuing network model," European Journal of Operational Research, Elsevier, vol. 260(3), pages 1043-1068.
    4. Jiancheng Long & Wai Yuen Szeto, 2019. "Link-Based System Optimum Dynamic Traffic Assignment Problems in General Networks," Operations Research, INFORMS, vol. 67(1), pages 167-182, January.
    5. Lopez, Anthony & Jin, Wenlong & Al Faruque, Mohammad Abdullah, 2020. "Security analysis for fixed-time traffic control systems," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 473-495.
    6. Li, Jia & Zhang, H. Michael, 2015. "Bounding tandem queuing system performance with variational theory," Transportation Research Part B: Methodological, Elsevier, vol. 81(P3), pages 848-862.
    7. Jin, Wen-Long, 2021. "Stable local dynamics for day-to-day departure time choice," Transportation Research Part B: Methodological, Elsevier, vol. 149(C), pages 463-479.
    8. Babak Javani & Abbas Babazadeh, 2020. "Path-Based Dynamic User Equilibrium Model with Applications to Strategic Transportation Planning," Networks and Spatial Economics, Springer, vol. 20(2), pages 329-366, June.
    9. Akamatsu, Takashi & Wada, Kentaro & Iryo, Takamasa & Hayashi, Shunsuke, 2018. "Departure time choice equilibrium and optimal transport problems," MPRA Paper 90361, University Library of Munich, Germany.
    10. Jin, Wen-Long & Wang, Xuting & Lou, Yingyan, 2020. "Stable dynamic pricing scheme independent of lane-choice models for high-occupancy-toll lanes," Transportation Research Part B: Methodological, Elsevier, vol. 140(C), pages 64-78.
    11. Jin, Wen-Long, 2017. "A Riemann solver for a system of hyperbolic conservation laws at a general road junction," Transportation Research Part B: Methodological, Elsevier, vol. 98(C), pages 21-41.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ke Han & Gabriel Eve & Terry L. Friesz, 2019. "Computing Dynamic User Equilibria on Large-Scale Networks with Software Implementation," Networks and Spatial Economics, Springer, vol. 19(3), pages 869-902, September.
    2. Wen-Long Jin, 2021. "A Link Queue Model of Network Traffic Flow," Transportation Science, INFORMS, vol. 55(2), pages 436-455, March.
    3. Ngoduy, D. & Hoang, N.H. & Vu, H.L. & Watling, D., 2016. "Optimal queue placement in dynamic system optimum solutions for single origin-destination traffic networks," Transportation Research Part B: Methodological, Elsevier, vol. 92(PB), pages 148-169.
    4. Li, Jia & Zhang, H. Michael, 2015. "Bounding tandem queuing system performance with variational theory," Transportation Research Part B: Methodological, Elsevier, vol. 81(P3), pages 848-862.
    5. Han, Ke & Friesz, Terry L. & Szeto, W.Y. & Liu, Hongcheng, 2015. "Elastic demand dynamic network user equilibrium: Formulation, existence and computation," Transportation Research Part B: Methodological, Elsevier, vol. 81(P1), pages 183-209.
    6. Wang, Yi & Szeto, W.Y. & Han, Ke & Friesz, Terry L., 2018. "Dynamic traffic assignment: A review of the methodological advances for environmentally sustainable road transportation applications," Transportation Research Part B: Methodological, Elsevier, vol. 111(C), pages 370-394.
    7. Han, Ke & Friesz, Terry L. & Yao, Tao, 2013. "A partial differential equation formulation of Vickrey’s bottleneck model, part I: Methodology and theoretical analysis," Transportation Research Part B: Methodological, Elsevier, vol. 49(C), pages 55-74.
    8. Ma, Rui & Ban, Xuegang (Jeff) & Szeto, W.Y., 2017. "Emission modeling and pricing on single-destination dynamic traffic networks," Transportation Research Part B: Methodological, Elsevier, vol. 100(C), pages 255-283.
    9. Jin, Wen-Long & Gan, Qi-Jian & Lebacque, Jean-Patrick, 2015. "A kinematic wave theory of capacity drop," Transportation Research Part B: Methodological, Elsevier, vol. 81(P1), pages 316-329.
    10. Jin, Wen-Long, 2018. "Unifiable multi-commodity kinematic wave model," Transportation Research Part B: Methodological, Elsevier, vol. 117(PB), pages 639-659.
    11. Jin, Wen-Long & Gan, Qi-Jian & Gayah, Vikash V., 2013. "A kinematic wave approach to traffic statics and dynamics in a double-ring network," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 114-131.
    12. Jin, Wen-Long, 2017. "On the stability of stationary states in general road networks," Transportation Research Part B: Methodological, Elsevier, vol. 98(C), pages 42-61.
    13. Jiancheng Long & Wai Yuen Szeto, 2019. "Link-Based System Optimum Dynamic Traffic Assignment Problems in General Networks," Operations Research, INFORMS, vol. 67(1), pages 167-182, January.
    14. Wang, David Z.W. & Du, Bo, 2016. "Continuum modelling of spatial and dynamic equilibrium in a travel corridor with heterogeneous commuters—A partial differential complementarity system approach," Transportation Research Part B: Methodological, Elsevier, vol. 85(C), pages 1-18.
    15. Jin, Wen-Long, 2015. "Continuous formulations and analytical properties of the link transmission model," Transportation Research Part B: Methodological, Elsevier, vol. 74(C), pages 88-103.
    16. Long, Jiancheng & Szeto, W.Y. & Huang, Hai-Jun & Gao, Ziyou, 2015. "An intersection-movement-based stochastic dynamic user optimal route choice model for assessing network performance," Transportation Research Part B: Methodological, Elsevier, vol. 74(C), pages 182-217.
    17. Smits, Erik-Sander & Bliemer, Michiel C.J. & Pel, Adam J. & van Arem, Bart, 2015. "A family of macroscopic node models," Transportation Research Part B: Methodological, Elsevier, vol. 74(C), pages 20-39.
    18. Han, Ke & Gayah, Vikash V., 2015. "Continuum signalized junction model for dynamic traffic networks: Offset, spillback, and multiple signal phases," Transportation Research Part B: Methodological, Elsevier, vol. 77(C), pages 213-239.
    19. Yu, Hao & Ma, Rui & Zhang, H. Michael, 2018. "Optimal traffic signal control under dynamic user equilibrium and link constraints in a general network," Transportation Research Part B: Methodological, Elsevier, vol. 110(C), pages 302-325.
    20. Flötteröd, G. & Osorio, C., 2017. "Stochastic network link transmission model," Transportation Research Part B: Methodological, Elsevier, vol. 102(C), pages 180-209.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:77:y:2015:i:c:p:1-16. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.