IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v149y2021icp463-479.html
   My bibliography  Save this article

Stable local dynamics for day-to-day departure time choice

Author

Listed:
  • Jin, Wen-Long

Abstract

Existing dynamical systems for day-to-day departure time choice are either unstable, or stable but assuming drivers to possess complete information and make decisions on both arrival and departure times. In this paper, we present a new dynamical system with local shifting of departure times, such that a driver only defers or advances his/her departure time to a time interval later or earlier with lower costs. We establish the asymmetrical upper bounds of the deferral and advance coefficients for the discrete model to be well-defined. We then derive the continuous version as a kinematic wave model and present some examples of symmetrical deferral and advance coefficients. We demonstrate that the stationary state of the dynamical system is the same as the user equilibrium, and the user equilibrium is proved with Lyapunov's second method to be stable for the symmetrical deferral and advance coefficients. With numerical examples, we verify the analytical results and examine the model's sensitivity to different factors with different combinations of heuristic asymmetrical coefficients and theoretically stable symmetrical coefficients. Both analytical and numerical results confirm that the new dynamical system is asymptotically stable in a stability region. This study provides some guidelines on how to derive new day-to-day dynamical system models of departure time user equilibrium. Such a dynamical system can potentially be applied to solve the general dynamic traffic assignment problem in the future.

Suggested Citation

  • Jin, Wen-Long, 2021. "Stable local dynamics for day-to-day departure time choice," Transportation Research Part B: Methodological, Elsevier, vol. 149(C), pages 463-479.
  • Handle: RePEc:eee:transb:v:149:y:2021:i:c:p:463-479
    DOI: 10.1016/j.trb.2021.05.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261521000989
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2021.05.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Paul I. Richards, 1956. "Shock Waves on the Highway," Operations Research, INFORMS, vol. 4(1), pages 42-51, February.
    2. Robin Lindsey, 2004. "Existence, Uniqueness, and Trip Cost Function Properties of User Equilibrium in the Bottleneck Model with Multiple User Classes," Transportation Science, INFORMS, vol. 38(3), pages 293-314, August.
    3. Vickrey, William S, 1969. "Congestion Theory and Transport Investment," American Economic Review, American Economic Association, vol. 59(2), pages 251-260, May.
    4. Michael J. Smith, 1984. "The Stability of a Dynamic Model of Traffic Assignment---An Application of a Method of Lyapunov," Transportation Science, INFORMS, vol. 18(3), pages 245-252, August.
    5. Arnott, Richard & Buli, Joshua, 2018. "Solving for equilibrium in the basic bathtub model," Transportation Research Part B: Methodological, Elsevier, vol. 109(C), pages 150-175.
    6. Ren-Yong Guo & Hai Yang & Hai-Jun Huang, 2018. "Are We Really Solving the Dynamic Traffic Equilibrium Problem with a Departure Time Choice?," Transportation Science, INFORMS, vol. 52(3), pages 603-620, June.
    7. Hofbauer, Josef & Sandholm, William H., 2009. "Stable games and their dynamics," Journal of Economic Theory, Elsevier, vol. 144(4), pages 1665-1693.4, July.
    8. Arnott, R. & de Palma, A. & Lindsey, R., 1990. "Departure time and route choice for the morning commute," Transportation Research Part B: Methodological, Elsevier, vol. 24(3), pages 209-228, June.
    9. Iryo, Takamasa, 2019. "Instability of departure time choice problem: A case with replicator dynamics," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 353-364.
    10. Jin, Wen-Long, 2015. "Point queue models: A unified approach," Transportation Research Part B: Methodological, Elsevier, vol. 77(C), pages 1-16.
    11. Jin, Wen-Long, 2018. "Unifiable multi-commodity kinematic wave model," Transportation Research Part B: Methodological, Elsevier, vol. 117(PB), pages 639-659.
    12. Jin, Wen-Long, 2020. "Generalized bathtub model of network trip flows," Transportation Research Part B: Methodological, Elsevier, vol. 136(C), pages 138-157.
    13. Wen-Long Jin, 2020. "Stable Day-to-Day Dynamics for Departure Time Choice," Transportation Science, INFORMS, vol. 54(1), pages 42-61, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Pengbo & Tian, Lijun & Xiao, Feng & Zhu, Hongwei, 2022. "Can day-to-day dynamic model be solved analytically? New insights on portraying equilibrium and accommodating autonomous vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 166(C), pages 374-395.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Iryo, Takamasa & Smith, Michael J. & Watling, David, 2020. "Stabilisation strategy for unstable transport systems under general evolutionary dynamics," Transportation Research Part B: Methodological, Elsevier, vol. 132(C), pages 136-151.
    2. Lamotte, Raphaël & Geroliminis, Nikolas, 2021. "Monotonicity in the trip scheduling problem," Transportation Research Part B: Methodological, Elsevier, vol. 146(C), pages 14-25.
    3. Jiancheng Long & Wai Yuen Szeto, 2019. "Link-Based System Optimum Dynamic Traffic Assignment Problems in General Networks," Operations Research, INFORMS, vol. 67(1), pages 167-182, January.
    4. Ren-Yong Guo & Hai Yang & Hai-Jun Huang, 2018. "Are We Really Solving the Dynamic Traffic Equilibrium Problem with a Departure Time Choice?," Transportation Science, INFORMS, vol. 52(3), pages 603-620, June.
    5. Liu, Wei & Szeto, Wai Yuen, 2020. "Learning and managing stochastic network traffic dynamics with an aggregate traffic representation," Transportation Research Part B: Methodological, Elsevier, vol. 137(C), pages 19-46.
    6. Wen-Long Jin, 2020. "Stable Day-to-Day Dynamics for Departure Time Choice," Transportation Science, INFORMS, vol. 54(1), pages 42-61, January.
    7. Wen-Long Jin, 2021. "A Link Queue Model of Network Traffic Flow," Transportation Science, INFORMS, vol. 55(2), pages 436-455, March.
    8. Iryo, Takamasa & Watling, David, 2019. "Properties of equilibria in transport problems with complex interactions between users," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 87-114.
    9. Feng Xiao & Zhen Qian & H. Zhang, 2011. "The Morning Commute Problem with Coarse Toll and Nonidentical Commuters," Networks and Spatial Economics, Springer, vol. 11(2), pages 343-369, June.
    10. Takayama, Yuki, 2018. "Time-varying congestion tolling and urban spatial structure," MPRA Paper 89896, University Library of Munich, Germany.
    11. Wang, Jing-Peng & Ban, Xuegang (Jeff) & Huang, Hai-Jun, 2019. "Dynamic ridesharing with variable-ratio charging-compensation scheme for morning commute," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 390-415.
    12. Zhu, Zheng & Li, Xinwei & Liu, Wei & Yang, Hai, 2019. "Day-to-day evolution of departure time choice in stochastic capacity bottleneck models with bounded rationality and various information perceptions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 131(C), pages 168-192.
    13. Iryo, Takamasa, 2019. "Instability of departure time choice problem: A case with replicator dynamics," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 353-364.
    14. Liu, Yang & Nie, Yu (Marco) & Hall, Jonathan, 2015. "A semi-analytical approach for solving the bottleneck model with general user heterogeneity," Transportation Research Part B: Methodological, Elsevier, vol. 71(C), pages 56-70.
    15. Bao, Yue & Xiao, Feng & Gao, Zaihan & Gao, Ziyou, 2017. "Investigation of the traffic congestion during public holiday and the impact of the toll-exemption policy," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 58-81.
    16. Takayama, Yuki, 2020. "Who gains and who loses from congestion pricing in a monocentric city with a bottleneck?," Economics of Transportation, Elsevier, vol. 24(C).
    17. Long, Jiancheng & Szeto, W.Y., 2019. "Congestion and environmental toll schemes for the morning commute with heterogeneous users and parallel routes," Transportation Research Part B: Methodological, Elsevier, vol. 129(C), pages 305-333.
    18. Wang, David Z.W. & Du, Bo, 2016. "Continuum modelling of spatial and dynamic equilibrium in a travel corridor with heterogeneous commuters—A partial differential complementarity system approach," Transportation Research Part B: Methodological, Elsevier, vol. 85(C), pages 1-18.
    19. Li, Jia & Zhang, H. Michael, 2015. "Bounding tandem queuing system performance with variational theory," Transportation Research Part B: Methodological, Elsevier, vol. 81(P3), pages 848-862.
    20. Yao, Tao & Wei, Mike Mingcheng & Zhang, Bo & Friesz, Terry, 2012. "Congestion derivatives for a traffic bottleneck with heterogeneous commuters," Transportation Research Part B: Methodological, Elsevier, vol. 46(10), pages 1454-1473.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:149:y:2021:i:c:p:463-479. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.