IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v85y2016icp1-18.html
   My bibliography  Save this article

Continuum modelling of spatial and dynamic equilibrium in a travel corridor with heterogeneous commuters—A partial differential complementarity system approach

Author

Listed:
  • Wang, David Z.W.
  • Du, Bo

Abstract

This paper studies on modelling and solving spatial and dynamic equilibrium travel pattern in a travel corridor. Consider a travel corridor connecting continuously distributed commuters to the city centre. The traffic is subject to flow congestion and the commuter heterogeneity is captured. The traffic flow dynamics is described by flow continuity equation and the equilibrium travel pattern is assumed to follow trip-timing condition. The continuous spatial and dynamic equilibrium travel pattern is formulated into a partial differential complementarity system, which is then solved through Godunov scheme. The proof of solution existence is provided, and a set of numerical experiments are demonstrated.

Suggested Citation

  • Wang, David Z.W. & Du, Bo, 2016. "Continuum modelling of spatial and dynamic equilibrium in a travel corridor with heterogeneous commuters—A partial differential complementarity system approach," Transportation Research Part B: Methodological, Elsevier, vol. 85(C), pages 1-18.
  • Handle: RePEc:eee:transb:v:85:y:2016:i:c:p:1-18
    DOI: 10.1016/j.trb.2015.12.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261515002817
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2015.12.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Han, Ke & Friesz, Terry L. & Yao, Tao, 2013. "A partial differential equation formulation of Vickrey’s bottleneck model, part I: Methodology and theoretical analysis," Transportation Research Part B: Methodological, Elsevier, vol. 49(C), pages 55-74.
    2. Du, Bo & Wang, David Z.W., 2014. "Continuum modeling of park-and-ride services considering travel time reliability and heterogeneous commuters – A linear complementarity system approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 71(C), pages 58-81.
    3. G. F. Newell, 1988. "Traffic Flow for the Morning Commute," Transportation Science, INFORMS, vol. 22(1), pages 47-58, February.
    4. Paul I. Richards, 1956. "Shock Waves on the Highway," Operations Research, INFORMS, vol. 4(1), pages 42-51, February.
    5. Liu, Yang & Nie, Yu (Marco), 2011. "Morning commute problem considering route choice, user heterogeneity and alternative system optima," Transportation Research Part B: Methodological, Elsevier, vol. 45(4), pages 619-642.
    6. Arnott, Richard & DePalma, Elijah, 2011. "The corridor problem: Preliminary results on the no-toll equilibrium," Transportation Research Part B: Methodological, Elsevier, vol. 45(5), pages 743-768, June.
    7. Ban, Xuegang (Jeff) & Pang, Jong-Shi & Liu, Henry X. & Ma, Rui, 2012. "Continuous-time point-queue models in dynamic network loading," Transportation Research Part B: Methodological, Elsevier, vol. 46(3), pages 360-380.
    8. Daganzo, Carlos F., 1995. "The cell transmission model, part II: Network traffic," Transportation Research Part B: Methodological, Elsevier, vol. 29(2), pages 79-93, April.
    9. Vickrey, William S, 1969. "Congestion Theory and Transport Investment," American Economic Review, American Economic Association, vol. 59(2), pages 251-260, May.
    10. Arnott, R. & de Palma, A. & Lindsey, R., 1990. "Departure time and route choice for the morning commute," Transportation Research Part B: Methodological, Elsevier, vol. 24(3), pages 209-228, June.
    11. Raadsen, Mark P.H. & Bliemer, Michiel C.J. & Bell, Michael G.H., 2016. "An efficient and exact event-based algorithm for solving simplified first order dynamic network loading problems in continuous time," Transportation Research Part B: Methodological, Elsevier, vol. 92(PB), pages 191-210.
    12. Yang, Hai & Liu, Wei & Wang, Xiaolei & Zhang, Xiaoning, 2013. "On the morning commute problem with bottleneck congestion and parking space constraints," Transportation Research Part B: Methodological, Elsevier, vol. 58(C), pages 106-118.
    13. Leclercq, Ludovic, 2007. "Hybrid approaches to the solutions of the "Lighthill-Whitham-Richards" model," Transportation Research Part B: Methodological, Elsevier, vol. 41(7), pages 701-709, August.
    14. Gonzales, Eric J. & Daganzo, Carlos F., 2012. "Morning commute with competing modes and distributed demand: User equilibrium, system optimum, and pricing," Transportation Research Part B: Methodological, Elsevier, vol. 46(10), pages 1519-1534.
    15. Daganzo, Carlos F., 1994. "The cell transmission model: A dynamic representation of highway traffic consistent with the hydrodynamic theory," Transportation Research Part B: Methodological, Elsevier, vol. 28(4), pages 269-287, August.
    16. Han, Lanshan & Ukkusuri, Satish & Doan, Kien, 2011. "Complementarity formulations for the cell transmission model based dynamic user equilibrium with departure time choice, elastic demand and user heterogeneity," Transportation Research Part B: Methodological, Elsevier, vol. 45(10), pages 1749-1767.
    17. Han, Ke & Friesz, Terry L. & Yao, Tao, 2013. "A partial differential equation formulation of Vickrey’s bottleneck model, part II: Numerical analysis and computation," Transportation Research Part B: Methodological, Elsevier, vol. 49(C), pages 75-93.
    18. Han, Ke & Friesz, Terry L. & Yao, Tao, 2013. "Existence of simultaneous route and departure choice dynamic user equilibrium," Transportation Research Part B: Methodological, Elsevier, vol. 53(C), pages 17-30.
    19. Ban, Xuegang (Jeff) & Pang, Jong-Shi & Liu, Henry X. & Ma, Rui, 2012. "Modeling and solving continuous-time instantaneous dynamic user equilibria: A differential complementarity systems approach," Transportation Research Part B: Methodological, Elsevier, vol. 46(3), pages 389-408.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Crawford, F. & Watling, D.P. & Connors, R.D., 2017. "A statistical method for estimating predictable differences between daily traffic flow profiles," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 196-213.
    2. (Walker) Wang, Wei & Wang, David Z.W. & Sun, Huijun & Feng, Zengzhe & Wu, Jianjun, 2016. "Braess Paradox of traffic networks with mixed equilibrium behaviors," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 93(C), pages 95-114.
    3. Wang, Wei (Walker) & Wang, David Z.W. & Zhang, Fangni & Sun, Huijun & Zhang, Wenyi & Wu, Jianjun, 2017. "Overcoming the Downs-Thomson Paradox by transit subsidy policies," Transportation Research Part A: Policy and Practice, Elsevier, vol. 95(C), pages 126-147.
    4. Li, Xue-yan & Li, Xue-mei & Yang, Lingrun & Li, Jing, 2018. "Dynamic route and departure time choice model based on self-adaptive reference point and reinforcement learning," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 502(C), pages 77-92.
    5. Xu, Shu-Xian & Liu, Tian-Liang & Huang, Hai-Jun & Liu, Ronghui, 2018. "Mode choice and railway subsidy in a congested monocentric city with endogenous population distribution," Transportation Research Part A: Policy and Practice, Elsevier, vol. 116(C), pages 413-433.
    6. Liu, Haoxiang & Wang, David Z.W., 2017. "Locating multiple types of charging facilities for battery electric vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 103(C), pages 30-55.
    7. Zhang, J. & Meng, M. & Wang, David, Z.W., 2019. "A dynamic pricing scheme with negative prices in dockless bike sharing systems," Transportation Research Part B: Methodological, Elsevier, vol. 127(C), pages 201-224.
    8. Long, Jiancheng & Szeto, W.Y. & Du, Jie & Wong, R.C.P., 2017. "A dynamic taxi traffic assignment model: A two-level continuum transportation system approach," Transportation Research Part B: Methodological, Elsevier, vol. 100(C), pages 222-254.
    9. Fu, Haoran & Akamatsu, Takashi & Satsukawa, Koki & Wada, Kentaro, 2022. "Dynamic traffic assignment in a corridor network: Optimum versus equilibrium," Transportation Research Part B: Methodological, Elsevier, vol. 161(C), pages 218-246.
    10. Wang, David Z.W. & Lo, Hong K., 2016. "Financial sustainability of rail transit service: The effect of urban development pattern," Transport Policy, Elsevier, vol. 48(C), pages 23-33.
    11. Xu, Guangming & Liu, Wei & Wu, Runfa & Yang, Hai, 2021. "A double time-scale passenger assignment model for high-speed railway networks with continuum capacity approximation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 150(C).
    12. Wu, Wei & Zhang, Fangni & Liu, Wei & Lodewijks, Gabriel, 2020. "Modelling the traffic in a mixed network with autonomous-driving expressways and non-autonomous local streets," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 134(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Zhi-Chun & Huang, Hai-Jun & Yang, Hai, 2020. "Fifty years of the bottleneck model: A bibliometric review and future research directions," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 311-342.
    2. Long, Jiancheng & Szeto, W.Y. & Gao, Ziyou & Huang, Hai-Jun & Shi, Qin, 2016. "The nonlinear equation system approach to solving dynamic user optimal simultaneous route and departure time choice problems," Transportation Research Part B: Methodological, Elsevier, vol. 83(C), pages 179-206.
    3. Li, Jia & Zhang, H. Michael, 2015. "Bounding tandem queuing system performance with variational theory," Transportation Research Part B: Methodological, Elsevier, vol. 81(P3), pages 848-862.
    4. Han, Ke & Friesz, Terry L. & Szeto, W.Y. & Liu, Hongcheng, 2015. "Elastic demand dynamic network user equilibrium: Formulation, existence and computation," Transportation Research Part B: Methodological, Elsevier, vol. 81(P1), pages 183-209.
    5. Wang, Yi & Szeto, W.Y. & Han, Ke & Friesz, Terry L., 2018. "Dynamic traffic assignment: A review of the methodological advances for environmentally sustainable road transportation applications," Transportation Research Part B: Methodological, Elsevier, vol. 111(C), pages 370-394.
    6. Li, Jia & Zhang, H.M., 2015. "A generalized queuing model and its solution properties," Transportation Research Part B: Methodological, Elsevier, vol. 79(C), pages 78-92.
    7. Han, Ke & Szeto, W.Y. & Friesz, Terry L., 2015. "Formulation, existence, and computation of boundedly rational dynamic user equilibrium with fixed or endogenous user tolerance," Transportation Research Part B: Methodological, Elsevier, vol. 79(C), pages 16-49.
    8. Ke Han & Gabriel Eve & Terry L. Friesz, 2019. "Computing Dynamic User Equilibria on Large-Scale Networks with Software Implementation," Networks and Spatial Economics, Springer, vol. 19(3), pages 869-902, September.
    9. Jin, Wen-Long, 2015. "Point queue models: A unified approach," Transportation Research Part B: Methodological, Elsevier, vol. 77(C), pages 1-16.
    10. Long, Jiancheng & Szeto, W.Y. & Huang, Hai-Jun & Gao, Ziyou, 2015. "An intersection-movement-based stochastic dynamic user optimal route choice model for assessing network performance," Transportation Research Part B: Methodological, Elsevier, vol. 74(C), pages 182-217.
    11. Fiems, Dieter & Prabhu, Balakrishna & De Turck, Koen, 2019. "Travel times, rational queueing and the macroscopic fundamental diagram of traffic flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 412-421.
    12. Friesz, Terry L. & Han, Ke, 2019. "The mathematical foundations of dynamic user equilibrium," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 309-328.
    13. Samitha Samaranayake & Walid Krichene & Jack Reilly & Maria Laura Delle Monache & Paola Goatin & Alexandre Bayen, 2018. "Discrete-Time System Optimal Dynamic Traffic Assignment (SO-DTA) with Partial Control for Physical Queuing Networks," Transportation Science, INFORMS, vol. 52(4), pages 982-1001, August.
    14. Li, Chuan-Yao & Huang, Hai-Jun, 2017. "Morning commute in a single-entry traffic corridor with early and late arrivals," Transportation Research Part B: Methodological, Elsevier, vol. 97(C), pages 23-49.
    15. Han, Ke & Piccoli, Benedetto & Friesz, Terry L., 2016. "Continuity of the path delay operator for dynamic network loading with spillback," Transportation Research Part B: Methodological, Elsevier, vol. 92(PB), pages 211-233.
    16. Wang, Jing-Peng & Ban, Xuegang (Jeff) & Huang, Hai-Jun, 2019. "Dynamic ridesharing with variable-ratio charging-compensation scheme for morning commute," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 390-415.
    17. Flötteröd, G. & Osorio, C., 2017. "Stochastic network link transmission model," Transportation Research Part B: Methodological, Elsevier, vol. 102(C), pages 180-209.
    18. Jiang, Chenming & Bhat, Chandra R. & Lam, William H.K., 2020. "A bibliometric overview of Transportation Research Part B: Methodological in the past forty years (1979–2019)," Transportation Research Part B: Methodological, Elsevier, vol. 138(C), pages 268-291.
    19. Ngoduy, D. & Hoang, N.H. & Vu, H.L. & Watling, D., 2016. "Optimal queue placement in dynamic system optimum solutions for single origin-destination traffic networks," Transportation Research Part B: Methodological, Elsevier, vol. 92(PB), pages 148-169.
    20. Bar-Gera, Hillel & Carey, Malachy, 2022. "Constructing a cell transmission model solution adhering fully to first-in-first-out conditions," Transportation Research Part B: Methodological, Elsevier, vol. 161(C), pages 247-267.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:85:y:2016:i:c:p:1-18. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.