IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v69y2014icp112-132.html
   My bibliography  Save this article

Post-disaster evacuation and temporary resettlement considering panic and panic spread

Author

Listed:
  • Hu, Zhi-Hua
  • Sheu, Jiuh-Biing
  • Xiao, Ling

Abstract

After a disaster, a huge number of homeless victims should be evacuated to temporary resettlement sites. However, because the number of temporary shelters is insufficient, as are shelter building capabilities, victims must be evacuated and resettled in batches. The perceived psychological penalty to victims may increase due to heightened panic when waiting for evacuation and resettlement, whereas psychological interventions can decrease the magnitude of this panic. Based on the susceptible–infective-removal model, panic spread among homeless victims and other disaster-affected people is modeled, while considering the effects of psychological interventions on panic spread. A function is derived to compute the increase in the number of victims to be evacuated due to panic spread. A novel mixed-integer linear program is constructed for multi-step evacuation and temporary resettlement under minimization of panic-induced psychological penalty cost, psychological intervention cost, and costs associated with transportation and building shelters. The model is solved by aggregating objectives into a single objective by assigning weights to these objectives. With Wenchuan County as the test case, the epicenter of the 2008 Sichuan earthquake, the influence and the sensitivity of parameters, tradeoff among costs, and the effects of various functions of panic strength on psychological penalty and monetary costs are assessed using six experimental scenarios. Analytical results reveal the complexity and managerial insights gained by applying the proposed method to post-disaster evacuation and temporary resettlement.

Suggested Citation

  • Hu, Zhi-Hua & Sheu, Jiuh-Biing & Xiao, Ling, 2014. "Post-disaster evacuation and temporary resettlement considering panic and panic spread," Transportation Research Part B: Methodological, Elsevier, vol. 69(C), pages 112-132.
  • Handle: RePEc:eee:transb:v:69:y:2014:i:c:p:112-132
    DOI: 10.1016/j.trb.2014.08.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261514001398
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2014.08.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Daganzo, Carlos F. & So, Stella K., 2011. "Managing evacuation networks," Transportation Research Part B: Methodological, Elsevier, vol. 45(9), pages 1424-1432.
    2. Guo, Ren-Yong & Huang, Hai-Jun & Wong, S.C., 2012. "Route choice in pedestrian evacuation under conditions of good and zero visibility: Experimental and simulation results," Transportation Research Part B: Methodological, Elsevier, vol. 46(6), pages 669-686.
    3. Hamed Mamani & Stephen E. Chick & David Simchi-Levi, 2013. "A Game-Theoretic Model of International Influenza Vaccination Coordination," Management Science, INFORMS, vol. 59(7), pages 1650-1670, July.
    4. Rawls, Carmen G. & Turnquist, Mark A., 2010. "Pre-positioning of emergency supplies for disaster response," Transportation Research Part B: Methodological, Elsevier, vol. 44(4), pages 521-534, May.
    5. Eva K. Lee & Chien-Hung Chen & Ferdinand Pietz & Bernard Benecke, 2009. "Modeling and Optimizing the Public-Health Infrastructure for Emergency Response," Interfaces, INFORMS, vol. 39(5), pages 476-490, October.
    6. Rennemo, Sigrid Johansen & Rø, Kristina Fougner & Hvattum, Lars Magnus & Tirado, Gregorio, 2014. "A three-stage stochastic facility routing model for disaster response planning," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 62(C), pages 116-135.
    7. Hasan, Samiul & Ukkusuri, Satish V., 2011. "A threshold model of social contagion process for evacuation decision making," Transportation Research Part B: Methodological, Elsevier, vol. 45(10), pages 1590-1605.
    8. Bell, Michael G.H. & Fonzone, Achille & Polyzoni, Chrisanthi, 2014. "Depot location in degradable transport networks," Transportation Research Part B: Methodological, Elsevier, vol. 66(C), pages 148-161.
    9. Brandeau, Margaret L. & Zaric, Gregory S. & Richter, Anke, 2003. "Resource allocation for control of infectious diseases in multiple independent populations: beyond cost-effectiveness analysis," Journal of Health Economics, Elsevier, vol. 22(4), pages 575-598, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. He, Yuxuan & Liu, Nan, 2015. "Methodology of emergency medical logistics for public health emergencies," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 79(C), pages 178-200.
    2. Hu, Shaolong & Hu, Qingmi & Tao, Sha & Dong, Zhijie Sasha, 2023. "A multi-stage stochastic programming approach for pre-positioning of relief supplies considering returns," Socio-Economic Planning Sciences, Elsevier, vol. 88(C).
    3. Donghai Wang & Menghao Xi & Yingzhen Chen, 2020. "A Dynamic Shelter Location and Victim Resettlement Model Considering Equitable Waiting Costs," IJERPH, MDPI, vol. 17(2), pages 1-17, January.
    4. Liu, Bingsheng & Sheu, Jiuh-Biing & Zhao, Xue & Chen, Yuan & Zhang, Wei, 2020. "Decision making on post-disaster rescue routing problems from the rescue efficiency perspective," European Journal of Operational Research, Elsevier, vol. 286(1), pages 321-335.
    5. Wu, Yangyang & Hou, Guangyang & Chen, Suren, 2021. "Post-earthquake resilience assessment and long-term restoration prioritization of transportation network," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    6. Ding, Ning & Chen, Tao & Zhu, Yu & Lu, Yang, 2021. "State-of-the-art high-rise building emergency evacuation behavior," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 561(C).
    7. Hu, Shaolong & Dong, Zhijie Sasha & Lev, Benjamin, 2022. "Supplier selection in disaster operations management: Review and research gap identification," Socio-Economic Planning Sciences, Elsevier, vol. 82(PB).
    8. Zhi-Chun Li & Qian Liu, 2020. "Optimal deployment of emergency rescue stations in an urban transportation corridor," Transportation, Springer, vol. 47(1), pages 445-473, February.
    9. Hu, Shao-Long & Han, Chuan-Feng & Meng, Ling-Peng, 2016. "Stochastic optimization for investment in facilities in emergency prevention," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 89(C), pages 14-31.
    10. Wu, Wen-Xiang & Huang, Hai-Jun, 2019. "A combined, adaptive strategy for managing evacuation routes," Transportation Research Part B: Methodological, Elsevier, vol. 123(C), pages 182-198.
    11. Julie Cidell, 2017. "Aero-automobility: getting there by ground and by air," Mobilities, Taylor & Francis Journals, vol. 12(5), pages 692-705, September.
    12. Bayram, Vedat & Tansel, Barbaros Ç. & Yaman, Hande, 2015. "Compromising system and user interests in shelter location and evacuation planning," Transportation Research Part B: Methodological, Elsevier, vol. 72(C), pages 146-163.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. A. Anaya-Arenas & J. Renaud & A. Ruiz, 2014. "Relief distribution networks: a systematic review," Annals of Operations Research, Springer, vol. 223(1), pages 53-79, December.
    2. Linus Nyiwul, 2021. "Epidemic Control and Resource Allocation: Approaches and Implications for the Management of COVID-19," Studies in Microeconomics, , vol. 9(2), pages 283-305, December.
    3. Hu, Shao-Long & Han, Chuan-Feng & Meng, Ling-Peng, 2016. "Stochastic optimization for investment in facilities in emergency prevention," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 89(C), pages 14-31.
    4. Alem, Douglas & Clark, Alistair & Moreno, Alfredo, 2016. "Stochastic network models for logistics planning in disaster relief," European Journal of Operational Research, Elsevier, vol. 255(1), pages 187-206.
    5. Acar, Müge & Kaya, Onur, 2019. "A healthcare network design model with mobile hospitals for disaster preparedness: A case study for Istanbul earthquake," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 130(C), pages 273-292.
    6. Sheu, Jiuh-Biing & Pan, Cheng, 2014. "A method for designing centralized emergency supply network to respond to large-scale natural disasters," Transportation Research Part B: Methodological, Elsevier, vol. 67(C), pages 284-305.
    7. Paul, Jomon A. & Zhang, Minjiao, 2019. "Supply location and transportation planning for hurricanes: A two-stage stochastic programming framework," European Journal of Operational Research, Elsevier, vol. 274(1), pages 108-125.
    8. Abhishek Behl & Pankaj Dutta, 2019. "Humanitarian supply chain management: a thematic literature review and future directions of research," Annals of Operations Research, Springer, vol. 283(1), pages 1001-1044, December.
    9. Li, Xiaoping & Batta, Rajan & Kwon, Changhyun, 2017. "Effective and equitable supply of gasoline to impacted areas in the aftermath of a natural disaster," Socio-Economic Planning Sciences, Elsevier, vol. 57(C), pages 25-34.
    10. Maharjan, Rajali & Hanaoka, Shinya, 2020. "A credibility-based multi-objective temporary logistics hub location-allocation model for relief supply and distribution under uncertainty," Socio-Economic Planning Sciences, Elsevier, vol. 70(C).
    11. Sabbaghtorkan, Monir & Batta, Rajan & He, Qing, 2020. "Prepositioning of assets and supplies in disaster operations management: Review and research gap identification," European Journal of Operational Research, Elsevier, vol. 284(1), pages 1-19.
    12. Ghavamifar, Ali & Torabi, S. Ali & Moshtari, Mohammad, 2022. "A hybrid relief procurement contract for humanitarian logistics," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 167(C).
    13. Bababeik, Mostafa & Khademi, Navid & Chen, Anthony, 2018. "Increasing the resilience level of a vulnerable rail network: The strategy of location and allocation of emergency relief trains," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 119(C), pages 110-128.
    14. Ying Lu & Shuqi Sun, 2020. "Scenario-Based Allocation of Emergency Resources in Metro Emergencies: A Model Development and a Case Study of Nanjing Metro," Sustainability, MDPI, vol. 12(16), pages 1-21, August.
    15. Paul, Jomon A. & Wang, Xinfang (Jocelyn), 2019. "Robust location-allocation network design for earthquake preparedness," Transportation Research Part B: Methodological, Elsevier, vol. 119(C), pages 139-155.
    16. Taymaz, S. & Iyigun, C. & Bayindir, Z.P. & Dellaert, N.P., 2020. "A healthcare facility location problem for a multi-disease, multi-service environment under risk aversion," Socio-Economic Planning Sciences, Elsevier, vol. 71(C).
    17. Yanyan Wang & Baiqing Sun, 2022. "Multiperiod optimal emergency material allocation considering road network damage and risk under uncertain conditions," Operational Research, Springer, vol. 22(3), pages 2173-2208, July.
    18. Dönmez, Zehranaz & Kara, Bahar Y. & Karsu, Özlem & Saldanha-da-Gama, Francisco, 2021. "Humanitarian facility location under uncertainty: Critical review and future prospects," Omega, Elsevier, vol. 102(C).
    19. Dufour, Émilie & Laporte, Gilbert & Paquette, Julie & Rancourt, Marie–Ève, 2018. "Logistics service network design for humanitarian response in East Africa," Omega, Elsevier, vol. 74(C), pages 1-14.
    20. Chowdhury, Sudipta & Emelogu, Adindu & Marufuzzaman, Mohammad & Nurre, Sarah G. & Bian, Linkan, 2017. "Drones for disaster response and relief operations: A continuous approximation model," International Journal of Production Economics, Elsevier, vol. 188(C), pages 167-184.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:69:y:2014:i:c:p:112-132. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.