IDEAS home Printed from https://ideas.repec.org/a/eee/soceps/v71y2020ics0038012117303464.html
   My bibliography  Save this article

A healthcare facility location problem for a multi-disease, multi-service environment under risk aversion

Author

Listed:
  • Taymaz, S.
  • Iyigun, C.
  • Bayindir, Z.P.
  • Dellaert, N.P.

Abstract

This paper presents a stochastic optimisation model for locating walk-in clinics for mobile populations in a network. The walk-in clinics ensure a continuum of care for the mobile population across the network by offering a perpetuation of services along the transportation lines, and also establishing referral systems to local healthcare facilities. The continuum of care requirements for different diseases is modelled using coverage definitions that are designed specifically to reflect the adherence protocols for services for different diseases. The risk of not providing the required care under different realisations of health service demand is considered. In this paper, for a multi-disease, multi-service environment, we propose a model to determine the location of roadside walk-in clinics and their assigned services. The objective is to maximise the total expected weighted coverage of the network subject to a Conditional-Value-at-Risk (CVaR) measure. This paper presents developed coverage definitions, the optimisation model and the computational study carried out on a real-life case in Africa.

Suggested Citation

  • Taymaz, S. & Iyigun, C. & Bayindir, Z.P. & Dellaert, N.P., 2020. "A healthcare facility location problem for a multi-disease, multi-service environment under risk aversion," Socio-Economic Planning Sciences, Elsevier, vol. 71(C).
  • Handle: RePEc:eee:soceps:v:71:y:2020:i:c:s0038012117303464
    DOI: 10.1016/j.seps.2019.100755
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0038012117303464
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.seps.2019.100755?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Murali, Pavankumar & Ordóñez, Fernando & Dessouky, Maged M., 2012. "Facility location under demand uncertainty: Response to a large-scale bio-terror attack," Socio-Economic Planning Sciences, Elsevier, vol. 46(1), pages 78-87.
    2. Capar, Ismail & Kuby, Michael & Leon, V. Jorge & Tsai, Yu-Jiun, 2013. "An arc cover–path-cover formulation and strategic analysis of alternative-fuel station locations," European Journal of Operational Research, Elsevier, vol. 227(1), pages 142-151.
    3. Rawls, Carmen G. & Turnquist, Mark A., 2012. "Pre-positioning and dynamic delivery planning for short-term response following a natural disaster," Socio-Economic Planning Sciences, Elsevier, vol. 46(1), pages 46-54.
    4. Gang Chen & Mark S. Daskin & Zuo‐Jun Max Shen & Stanislav Uryasev, 2006. "The α‐reliable mean‐excess regret model for stochastic facility location modeling," Naval Research Logistics (NRL), John Wiley & Sons, vol. 53(7), pages 617-626, October.
    5. Sterle, Claudio & Sforza, Antonio & Esposito Amideo, Annunziata, 2016. "Multi-period location of flow intercepting portable facilities of an intelligent transportation system," Socio-Economic Planning Sciences, Elsevier, vol. 53(C), pages 4-13.
    6. de Vries, H. & van de Klundert, J.J. & Wagelmans, A.P.M., 2014. "The Roadside Healthcare Facility Location Problem," Econometric Institute Research Papers EI 2014-09, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    7. Rawls, Carmen G. & Turnquist, Mark A., 2010. "Pre-positioning of emergency supplies for disaster response," Transportation Research Part B: Methodological, Elsevier, vol. 44(4), pages 521-534, May.
    8. James E. Hodder, 1984. "Technical Note—Financial Market Approaches to Facility Location under Uncertainty," Operations Research, INFORMS, vol. 32(6), pages 1374-1380, December.
    9. Eva K. Lee & Chien-Hung Chen & Ferdinand Pietz & Bernard Benecke, 2009. "Modeling and Optimizing the Public-Health Infrastructure for Emergency Response," Interfaces, INFORMS, vol. 39(5), pages 476-490, October.
    10. James V. Jucker & Robert C. Carlson, 1976. "The Simple Plant-Location Problem under Uncertainty," Operations Research, INFORMS, vol. 24(6), pages 1045-1055, December.
    11. Oded Berman & Dimitris Bertsimas & Richard C. Larson, 1995. "Locating Discretionary Service Facilities, II: Maximizing Market Size, Minimizing Inconvenience," Operations Research, INFORMS, vol. 43(4), pages 623-632, August.
    12. O'Hanley, Jesse R. & Church, Richard L., 2011. "Designing robust coverage networks to hedge against worst-case facility losses," European Journal of Operational Research, Elsevier, vol. 209(1), pages 23-36, February.
    13. Current, John R. & Schilling, David A., 1994. "The median tour and maximal covering tour problems: Formulations and heuristics," European Journal of Operational Research, Elsevier, vol. 73(1), pages 114-126, February.
    14. Berman, Oded & Krass, Dmitry & Drezner, Zvi, 2003. "The gradual covering decay location problem on a network," European Journal of Operational Research, Elsevier, vol. 151(3), pages 474-480, December.
    15. Xueping Li & Zhaoxia Zhao & Xiaoyan Zhu & Tami Wyatt, 2011. "Covering models and optimization techniques for emergency response facility location and planning: a review," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 74(3), pages 281-310, December.
    16. Caunhye, Aakil M. & Nie, Xiaofeng & Pokharel, Shaligram, 2012. "Optimization models in emergency logistics: A literature review," Socio-Economic Planning Sciences, Elsevier, vol. 46(1), pages 4-13.
    17. Zvi Drezner & George O. Wesolowsky & Tammy Drezner, 2004. "The gradual covering problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 51(6), pages 841-855, September.
    18. Richard Church & Charles R. Velle, 1974. "The Maximal Covering Location Problem," Papers in Regional Science, Wiley Blackwell, vol. 32(1), pages 101-118, January.
    19. Oded Berman & Richard C. Larson & Nikoletta Fouska, 1992. "Optimal Location of Discretionary Service Facilities," Transportation Science, INFORMS, vol. 26(3), pages 201-211, August.
    20. Kuby, Michael & Lim, Seow, 2005. "The flow-refueling location problem for alternative-fuel vehicles," Socio-Economic Planning Sciences, Elsevier, vol. 39(2), pages 125-145, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tao, Zhuolin & Zhao, Min, 2023. "Planning for equal transit-based accessibility of healthcare facilities: A case study of Shenzhen, China," Socio-Economic Planning Sciences, Elsevier, vol. 88(C).
    2. Mendoza-Gómez, Rodolfo & Ríos-Mercado, Roger Z., 2022. "Regionalization of primary health care units with multi-institutional collaboration," Socio-Economic Planning Sciences, Elsevier, vol. 83(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. A. Anaya-Arenas & J. Renaud & A. Ruiz, 2014. "Relief distribution networks: a systematic review," Annals of Operations Research, Springer, vol. 223(1), pages 53-79, December.
    2. Tanaka, Ken-ichi & Furuta, Takehiro & Toriumi, Shigeki, 2019. "Railway flow interception location model: Model development and case study of Tokyo metropolitan railway network," Operations Research Perspectives, Elsevier, vol. 6(C).
    3. Abhishek Behl & Pankaj Dutta, 2019. "Humanitarian supply chain management: a thematic literature review and future directions of research," Annals of Operations Research, Springer, vol. 283(1), pages 1001-1044, December.
    4. Areej Alhothali & Budoor Alwated & Kamil Faisal & Sultanah Alshammari & Reem Alotaibi & Nusaybah Alghanmi & Omaimah Bamasag & Manal Bin Yamin, 2022. "Location-Allocation Model to Improve the Distribution of COVID-19 Vaccine Centers in Jeddah City, Saudi Arabia," IJERPH, MDPI, vol. 19(14), pages 1-21, July.
    5. Bababeik, Mostafa & Khademi, Navid & Chen, Anthony, 2018. "Increasing the resilience level of a vulnerable rail network: The strategy of location and allocation of emergency relief trains," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 119(C), pages 110-128.
    6. Dönmez, Zehranaz & Kara, Bahar Y. & Karsu, Özlem & Saldanha-da-Gama, Francisco, 2021. "Humanitarian facility location under uncertainty: Critical review and future prospects," Omega, Elsevier, vol. 102(C).
    7. Timothy C. Matisziw, 2019. "Maximizing Expected Coverage of Flow and Opportunity for Diversion in Networked Systems," Networks and Spatial Economics, Springer, vol. 19(1), pages 199-218, March.
    8. Loree, Nick & Aros-Vera, Felipe, 2018. "Points of distribution location and inventory management model for Post-Disaster Humanitarian Logistics," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 116(C), pages 1-24.
    9. de Vries, Harwin & Duijzer, Evelot, 2017. "Incorporating driving range variability in network design for refueling facilities," Omega, Elsevier, vol. 69(C), pages 102-114.
    10. Renata Turkeš & Daniel Palhazi Cuervo & Kenneth Sörensen, 2019. "Pre-positioning of emergency supplies: does putting a price on human life help to save lives?," Annals of Operations Research, Springer, vol. 283(1), pages 865-895, December.
    11. Wang, Wei & Wu, Shining & Wang, Shuaian & Zhen, Lu & Qu, Xiaobo, 2021. "Emergency facility location problems in logistics: Status and perspectives," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 154(C).
    12. Marković, Nikola & Ryzhov, Ilya O. & Schonfeld, Paul, 2017. "Evasive flow capture: A multi-period stochastic facility location problem with independent demand," European Journal of Operational Research, Elsevier, vol. 257(2), pages 687-703.
    13. Tammy Drezner & Zvi Drezner, 2019. "Cooperative Cover of Uniform Demand," Networks and Spatial Economics, Springer, vol. 19(3), pages 819-831, September.
    14. Alan T. Murray, 2016. "Maximal Coverage Location Problem," International Regional Science Review, , vol. 39(1), pages 5-27, January.
    15. Souza, Juliano Silva & Lim-Apo, Flávio Araújo & Varella, Leonardo & Coelho, Antônio Sérgio & Souza, João Carlos, 2022. "Multi-period optimization model for planning people allocation in shelters and distributing aid with special constraints," Socio-Economic Planning Sciences, Elsevier, vol. 79(C).
    16. Chung, Sung Hoon & Kwon, Changhyun, 2015. "Multi-period planning for electric car charging station locations: A case of Korean Expressways," European Journal of Operational Research, Elsevier, vol. 242(2), pages 677-687.
    17. Mehdi Ansari & Juan S. Borrero & Leonardo Lozano, 2023. "Robust Minimum-Cost Flow Problems Under Multiple Ripple Effect Disruptions," INFORMS Journal on Computing, INFORMS, vol. 35(1), pages 83-103, January.
    18. Hamid Mousavi & Soroush Avakh Darestani & Parham Azimi, 2021. "An artificial neural network based mathematical model for a stochastic health care facility location problem," Health Care Management Science, Springer, vol. 24(3), pages 499-514, September.
    19. Alem, Douglas & Clark, Alistair & Moreno, Alfredo, 2016. "Stochastic network models for logistics planning in disaster relief," European Journal of Operational Research, Elsevier, vol. 255(1), pages 187-206.
    20. Esposito Amideo, A. & Scaparra, M.P. & Kotiadis, K., 2019. "Optimising shelter location and evacuation routing operations: The critical issues," European Journal of Operational Research, Elsevier, vol. 279(2), pages 279-295.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:soceps:v:71:y:2020:i:c:s0038012117303464. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/seps .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.