IDEAS home Printed from https://ideas.repec.org/a/eee/soceps/v46y2012i1p78-87.html
   My bibliography  Save this article

Facility location under demand uncertainty: Response to a large-scale bio-terror attack

Author

Listed:
  • Murali, Pavankumar
  • Ordóñez, Fernando
  • Dessouky, Maged M.

Abstract

In the event of a catastrophic bio-terror attack, major urban centers need to efficiently distribute large amounts of medicine to the population. In this paper, we consider a facility location problem to determine the points in a large city where medicine should be handed out to the population. We consider locating capacitated facilities in order to maximize coverage, taking into account a distance-dependent coverage function and demand uncertainty. We formulate a special case of the maximal covering location problem (MCLP) with a loss function, to account for the distance-sensitive demand, and chance-constraints to address the demand uncertainty. This model decides the locations to open, and the supplies and demand assigned to each location. We solve this problem with a locate-allocate heuristic. We illustrate the use of the model by solving a case study of locating facilities to address a large-scale emergency of a hypothetical anthrax attack in Los Angeles County.

Suggested Citation

  • Murali, Pavankumar & Ordóñez, Fernando & Dessouky, Maged M., 2012. "Facility location under demand uncertainty: Response to a large-scale bio-terror attack," Socio-Economic Planning Sciences, Elsevier, vol. 46(1), pages 78-87.
  • Handle: RePEc:eee:soceps:v:46:y:2012:i:1:p:78-87
    DOI: 10.1016/j.seps.2011.09.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0038012111000450
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.seps.2011.09.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. James V. Jucker & Robert C. Carlson, 1976. "The Simple Plant-Location Problem under Uncertainty," Operations Research, INFORMS, vol. 24(6), pages 1045-1055, December.
    2. Aboolian, Robert & Berman, Oded & Krass, Dmitry, 2007. "Competitive facility location and design problem," European Journal of Operational Research, Elsevier, vol. 182(1), pages 40-62, October.
    3. Berman, Oded & Krass, Dmitry & Drezner, Zvi, 2003. "The gradual covering decay location problem on a network," European Journal of Operational Research, Elsevier, vol. 151(3), pages 474-480, December.
    4. Mirchandani, Pitu B. & Oudjit, Aissa & Wong, Richard T., 1985. "`Multidimensional' extensions and a nested dual approach for the m-median problem," European Journal of Operational Research, Elsevier, vol. 21(1), pages 121-137, July.
    5. M Gendreau & G Laporte & F Semet, 2006. "The maximal expected coverage relocation problem for emergency vehicles," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(1), pages 22-28, January.
    6. Sherali, Hanif D. & Carter, Todd B. & Hobeika, Antoine G., 1991. "A location-allocation model and algorithm for evacuation planning under hurricane/flood conditions," Transportation Research Part B: Methodological, Elsevier, vol. 25(6), pages 439-452, December.
    7. Rawls, Carmen G. & Turnquist, Mark A., 2010. "Pre-positioning of emergency supplies for disaster response," Transportation Research Part B: Methodological, Elsevier, vol. 44(4), pages 521-534, May.
    8. Berman, Oded & Gavious, Arieh, 2007. "Location of terror response facilities: A game between state and terrorist," European Journal of Operational Research, Elsevier, vol. 177(2), pages 1113-1133, March.
    9. Berman, Oded & Drezner, Zvi & Krass, Dmitry & Wesolowsky, George O., 2009. "The variable radius covering problem," European Journal of Operational Research, Elsevier, vol. 196(2), pages 516-525, July.
    10. Yi, Wei & Ozdamar, Linet, 2007. "A dynamic logistics coordination model for evacuation and support in disaster response activities," European Journal of Operational Research, Elsevier, vol. 179(3), pages 1177-1193, June.
    11. Chang, Mei-Shiang & Tseng, Ya-Ling & Chen, Jing-Wen, 2007. "A scenario planning approach for the flood emergency logistics preparation problem under uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 43(6), pages 737-754, November.
    12. M. Hodgson & Soren Jacobsen, 2009. "A hierarchical location-allocation model with travel based on expected referral distances," Annals of Operations Research, Springer, vol. 167(1), pages 271-286, March.
    13. François V. Louveaux & D. Peeters, 1992. "A Dual-Based Procedure for Stochastic Facility Location," Operations Research, INFORMS, vol. 40(3), pages 564-573, June.
    14. Berman, Oded & Drezner, Zvi, 2008. "The p-median problem under uncertainty," European Journal of Operational Research, Elsevier, vol. 189(1), pages 19-30, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Souza, Juliano Silva & Lim-Apo, Flávio Araújo & Varella, Leonardo & Coelho, Antônio Sérgio & Souza, João Carlos, 2022. "Multi-period optimization model for planning people allocation in shelters and distributing aid with special constraints," Socio-Economic Planning Sciences, Elsevier, vol. 79(C).
    2. A. Anaya-Arenas & J. Renaud & A. Ruiz, 2014. "Relief distribution networks: a systematic review," Annals of Operations Research, Springer, vol. 223(1), pages 53-79, December.
    3. Li, Lingfeng & Jin, Mingzhou & Zhang, Li, 2011. "Sheltering network planning and management with a case in the Gulf Coast region," International Journal of Production Economics, Elsevier, vol. 131(2), pages 431-440, June.
    4. Caunhye, Aakil M. & Nie, Xiaofeng & Pokharel, Shaligram, 2012. "Optimization models in emergency logistics: A literature review," Socio-Economic Planning Sciences, Elsevier, vol. 46(1), pages 4-13.
    5. Sheu, Jiuh-Biing & Pan, Cheng, 2014. "A method for designing centralized emergency supply network to respond to large-scale natural disasters," Transportation Research Part B: Methodological, Elsevier, vol. 67(C), pages 284-305.
    6. Abhishek Behl & Pankaj Dutta, 2019. "Humanitarian supply chain management: a thematic literature review and future directions of research," Annals of Operations Research, Springer, vol. 283(1), pages 1001-1044, December.
    7. Wang, Qingyi & Nie, Xiaofeng, 2022. "A stochastic programming model for emergency supply planning considering transportation network mitigation and traffic congestion," Socio-Economic Planning Sciences, Elsevier, vol. 79(C).
    8. Taymaz, S. & Iyigun, C. & Bayindir, Z.P. & Dellaert, N.P., 2020. "A healthcare facility location problem for a multi-disease, multi-service environment under risk aversion," Socio-Economic Planning Sciences, Elsevier, vol. 71(C).
    9. Galindo, Gina & Batta, Rajan, 2013. "Review of recent developments in OR/MS research in disaster operations management," European Journal of Operational Research, Elsevier, vol. 230(2), pages 201-211.
    10. Oscar Rodríguez-Espíndola & Juan Gaytán, 2015. "Scenario-based preparedness plan for floods," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(2), pages 1241-1262, March.
    11. Renata Turkeš & Kenneth Sörensen & Daniel Palhazi Cuervo, 2021. "A matheuristic for the stochastic facility location problem," Journal of Heuristics, Springer, vol. 27(4), pages 649-694, August.
    12. Wilson, Duncan T. & Hawe, Glenn I. & Coates, Graham & Crouch, Roger S., 2016. "Online optimization of casualty processing in major incident response: An experimental analysis," European Journal of Operational Research, Elsevier, vol. 252(1), pages 334-348.
    13. Karatas, Mumtaz & Eriskin, Levent, 2023. "Linear and piecewise linear formulations for a hierarchical facility location and sizing problem," Omega, Elsevier, vol. 118(C).
    14. Rodríguez-Espíndola, Oscar & Albores, Pavel & Brewster, Christopher, 2018. "Disaster preparedness in humanitarian logistics: A collaborative approach for resource management in floods," European Journal of Operational Research, Elsevier, vol. 264(3), pages 978-993.
    15. Yanbin Chang & Yongjia Song & Burak Eksioglu, 2022. "A stochastic look-ahead approach for hurricane relief logistics operations planning under uncertainty," Annals of Operations Research, Springer, vol. 319(1), pages 1231-1263, December.
    16. Rottkemper, Beate & Fischer, Kathrin & Blecken, Alexander, 2012. "A transshipment model for distribution and inventory relocation under uncertainty in humanitarian operations," Socio-Economic Planning Sciences, Elsevier, vol. 46(1), pages 98-109.
    17. German A. Velasquez & Maria E. Mayorga & Eduardo A. R. Cruz, 2019. "Prepositioning inventory for disasters: a robust and equitable model," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 41(3), pages 757-785, September.
    18. Paul, Jomon Aliyas & MacDonald, Leo, 2016. "Optimal location, capacity and timing of stockpiles for improved hurricane preparedness," International Journal of Production Economics, Elsevier, vol. 174(C), pages 11-28.
    19. Cotes, Nathalie & Cantillo, Victor, 2019. "Including deprivation costs in facility location models for humanitarian relief logistics," Socio-Economic Planning Sciences, Elsevier, vol. 65(C), pages 89-100.
    20. Rodolfo Modrigais Strauss Nunes & Susana Carla Farias Pereira, 2022. "Intellectual structure and trends in the humanitarian operations field," Annals of Operations Research, Springer, vol. 319(1), pages 1099-1157, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:soceps:v:46:y:2012:i:1:p:78-87. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/seps .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.