IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v85y2016icp196-207.html
   My bibliography  Save this article

The impacts of built environment on home-based work and non-work trips: An empirical study from Iran

Author

Listed:
  • Etminani-Ghasrodashti, Roya
  • Ardeshiri, Mahyar

Abstract

This paper aims to explore the impact of built environment attributes in the scale of one quarter-mile buffers on individuals’ travel behaviors in the metropolitan of Shiraz, Iran. In order to develop this topic, the present research is developed through the analysis of a dataset collected from residents of 22 neighborhoods with variety of land use features. Using household survey on daily activities, this study investigates home-based work and non-work (HBW and HBN) trips. Structural equation models are utilized to examine the relationships between land use attributes and travel behavior while taking into account socio-economic characteristics as the residential self-selection. Results from models indicate that individuals residing in areas with high residential and job density, and shorter distance to sub-centers are more interested in using transit and non-motorized modes. Moreover, residents of neighborhoods with mixed land uses tend to travel less by car and more by transit and non-motorized modes to non-work destinations. Nevertheless, the influences of design measurements such as street density and internal connectivity are mixed in our models. Although higher internal connectivity leads to more transit and non-motorized trips in HBW model, the impacts of design measurements on individuals travel behavior in HBN model are significantly in contrast with research hypothesis. Our study also shows the importance of individuals’ self-selection impacts on travel behaviors; individuals with special socio-demographic attributes live in the neighborhoods with regard to their transportation patterns. The findings of this paper reveal that the effects of built environment attributes on travel behavior in origins of trips do not exactly correspond with the expected predictions, when it comes in practice in a various study context. This study displays the necessity of regarding local conditions of urban areas and the inherent differences between travel destinations in integrating land use and transportation planning.

Suggested Citation

  • Etminani-Ghasrodashti, Roya & Ardeshiri, Mahyar, 2016. "The impacts of built environment on home-based work and non-work trips: An empirical study from Iran," Transportation Research Part A: Policy and Practice, Elsevier, vol. 85(C), pages 196-207.
  • Handle: RePEc:eee:transa:v:85:y:2016:i:c:p:196-207
    DOI: 10.1016/j.tra.2016.01.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856416000227
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2016.01.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Reid Ewing & Robert Cervero, 2010. "Travel and the Built Environment," Journal of the American Planning Association, Taylor & Francis Journals, vol. 76(3), pages 265-294.
    2. Golob, Thomas F., 2003. "Structural equation modeling for travel behavior research," Transportation Research Part B: Methodological, Elsevier, vol. 37(1), pages 1-25, January.
    3. Mokhtarian, Patricia L. & Salomon, Ilan, 2001. "How derived is the demand for travel? Some conceptual and measurement considerations," Transportation Research Part A: Policy and Practice, Elsevier, vol. 35(8), pages 695-719, September.
    4. Lawrence D. Frank & Peter Engelke, 2005. "Multiple Impacts of the Built Environment on Public Health: Walkable Places and the Exposure to Air Pollution," International Regional Science Review, , vol. 28(2), pages 193-216, April.
    5. Patricia L. Mokhtarian & Michael N. Bagley, 2002. "The impact of residential neighborhood type on travel behavior: A structural equations modeling approach," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 36(2), pages 279-297.
    6. Ryuichi Kitamura, 2009. "Life-style and travel demand," Transportation, Springer, vol. 36(6), pages 679-710, November.
    7. Giuliano, Genevieve, 1995. "The Weakening Transportation-Land Use Connection," University of California Transportation Center, Working Papers qt1dn8t3w7, University of California Transportation Center.
    8. Lawrence Frank & Mark Bradley & Sarah Kavage & James Chapman & T. Lawton, 2008. "Urban form, travel time, and cost relationships with tour complexity and mode choice," Transportation, Springer, vol. 35(1), pages 37-54, January.
    9. de Abreu e Silva, João & Morency, Catherine & Goulias, Konstadinos G., 2012. "Using structural equations modeling to unravel the influence of land use patterns on travel behavior of workers in Montreal," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(8), pages 1252-1264.
    10. Etminani-Ghasrodashti, Roya & Ardeshiri, Mahyar, 2015. "Modeling travel behavior by the structural relationships between lifestyle, built environment and non-working trips," Transportation Research Part A: Policy and Practice, Elsevier, vol. 78(C), pages 506-518.
    11. Boarnet, Marlon & Crane, Randall, 2001. "The influence of land use on travel behavior: specification and estimation strategies," Transportation Research Part A: Policy and Practice, Elsevier, vol. 35(9), pages 823-845, November.
    12. Mokhtarian, Patricia L & Salomon, Ilan & S, Lothlorien, 2001. "Understanding the Demand for Travel: It's Not Purely 'Derived'," University of California Transportation Center, Working Papers qt5bh2d8mh, University of California Transportation Center.
    13. Petter NÆss & Ole Jensen, 2004. "Urban structure matters, even in a small town," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 47(1), pages 35-57.
    14. Xinyu (Jason) Cao, 2010. "Exploring Causal Effects of Neighborhood Type on Walking Behavior Using Stratification on the Propensity Score," Environment and Planning A, , vol. 42(2), pages 487-504, February.
    15. Frank, Lawrence Douglas & Saelens, Brian E. & Powell, Ken E. & Chapman, James E., 2007. "Stepping towards causation: Do built environments or neighborhood and travel preferences explain physical activity, driving, and obesity?," Social Science & Medicine, Elsevier, vol. 65(9), pages 1898-1914, November.
    16. Van Acker, Veronique & Mokhtarian, Patricia L. & Witlox, Frank, 2014. "Car availability explained by the structural relationships between lifestyles, residential location, and underlying residential and travel attitudes," Transport Policy, Elsevier, vol. 35(C), pages 88-99.
    17. Cervero, Robert B., 2013. "Linking urban transport and land use in developing countries," The Journal of Transport and Land Use, Center for Transportation Studies, University of Minnesota, vol. 6(1), pages 7-24.
    18. Colin Vance & Ralf Hedel, 2007. "The impact of urban form on automobile travel: disentangling causation from correlation," Transportation, Springer, vol. 34(5), pages 575-588, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zuo, Ting & Wei, Heng & Liu, Hao & Yang, Y. Jeffrey, 2019. "Bi-level optimization approach for configuring population and employment distributions with minimized vehicle travel demand," Journal of Transport Geography, Elsevier, vol. 74(C), pages 161-172.
    2. Neves, Carlos Eduardo Teixeira & da Silva, Alan Ricardo & Arruda, Fabiana Serra de, 2021. "Exploring the link between built environment and walking choice in São Paulo city, Brazil," Journal of Transport Geography, Elsevier, vol. 93(C).
    3. Erick Guerra & Shengxiao Li & Ariadna Reyes, 2022. "How do low-income commuters get to work in US and Mexican cities? A comparative empirical assessment," Urban Studies, Urban Studies Journal Limited, vol. 59(1), pages 75-96, January.
    4. Jing Li & Kevin Lo & Meng Guo, 2018. "Do Socio-Economic Characteristics Affect Travel Behavior? A Comparative Study of Low-Carbon and Non-Low-Carbon Shopping Travel in Shenyang City, China," IJERPH, MDPI, vol. 15(7), pages 1-11, June.
    5. Enayat Mirzaei & Dominique Mignot, 2021. "An Empirical Analysis of Mode Choice Decision for Utilitarian and Hedonic Trips: Evidence from Iran," Sustainability, MDPI, vol. 13(12), pages 1-23, June.
    6. Mitra, Suman K. & Saphores, Jean-Daniel M., 2017. "Carless in California: Green choice or misery?," Journal of Transport Geography, Elsevier, vol. 65(C), pages 1-12.
    7. Wei Wu & Binxia Xue & Yan Song & Xujie Gong & Tao Ma, 2023. "Investigating the Impacts of Urban Built Environment on Travel Energy Consumption: A Case Study of Ningbo, China," Land, MDPI, vol. 12(1), pages 1-19, January.
    8. Mingzhu Song & Yi Zhang & Meng Li & Yi Zhang, 2021. "Accessibility of Transit Stops with Multiple Feeder Modes: Walking and Private-Bike Cycling," Sustainability, MDPI, vol. 13(6), pages 1-27, March.
    9. Liu, Jixiang & Wang, Bo & Xiao, Longzhu, 2021. "Non-linear associations between built environment and active travel for working and shopping: An extreme gradient boosting approach," Journal of Transport Geography, Elsevier, vol. 92(C).
    10. Sakinah Fathrunnadi Shalihati & Andri Kurniawan & Sri Rum Giyarsih & Djaka Marwasta & Dimas Bayu Endrayana Dharmowijoyo, 2022. "Daily Activity Space for Various Generations in the Yogyakarta Metropolitan Area," Sustainability, MDPI, vol. 14(20), pages 1-24, October.
    11. Soltani, Ali, 2017. "Social and urban form determinants of vehicle ownership; evidence from a developing country," Transportation Research Part A: Policy and Practice, Elsevier, vol. 96(C), pages 90-100.
    12. Nurul Habib, Khandker & El-Assi, Wafic & Hasnine, Md. Sami & Lamers, James, 2017. "Daily activity-travel scheduling behaviour of non-workers in the National Capital Region (NCR) of Canada," Transportation Research Part A: Policy and Practice, Elsevier, vol. 97(C), pages 1-16.
    13. Jain, Deepty & Tiwari, Geetam, 2019. "Measuring density and diversity to model travel behavior in Indian context," Land Use Policy, Elsevier, vol. 88(C).
    14. Bautista-Hernández, Dorian Antonio, 2021. "Mode choice in commuting and the built environment in México City. Is there a chance for non-motorized travel?," Journal of Transport Geography, Elsevier, vol. 92(C).
    15. Mitra, Suman K. & Saphores, Jean-Daniel M., 2019. "Why do they live so far from work? Determinants of long-distance commuting in California," Journal of Transport Geography, Elsevier, vol. 80(C).
    16. Chowdhury, Tufayel & Scott, Darren M., 2020. "An analysis of the built environment and auto travel in Halifax, Canada," Transport Policy, Elsevier, vol. 94(C), pages 23-33.
    17. Hamid Mostofi & Houshmand Masoumi & Hans-Liudger Dienel, 2020. "The Association between the Regular Use of ICT Based Mobility Services and the Bicycle Mode Choice in Tehran and Cairo," IJERPH, MDPI, vol. 17(23), pages 1-19, November.
    18. Hamid Mostofi & Houshmand Masoumi & Hans-Liudger Dienel, 2020. "The Relationship between Regular Use of Ridesourcing and Frequency of Public Transport Use in the MENA Region (Tehran and Cairo)," Sustainability, MDPI, vol. 12(19), pages 1-19, October.
    19. Mitra, Suman & Yao, Mingqi & Ritchie, Stephen G., 2021. "Gender differences in elderly mobility in the United States," Transportation Research Part A: Policy and Practice, Elsevier, vol. 154(C), pages 203-226.
    20. Fan Gao & Jinjun Tang & Zhitao Li, 2022. "Effects of spatial units and travel modes on urban commuting demand modeling," Transportation, Springer, vol. 49(6), pages 1549-1575, December.
    21. Ding, Chuan & Cao, Xinyu & Yu, Bin & Ju, Yang, 2021. "Non-linear associations between zonal built environment attributes and transit commuting mode choice accounting for spatial heterogeneity," Transportation Research Part A: Policy and Practice, Elsevier, vol. 148(C), pages 22-35.
    22. Hamid Mostofi & Houshmand Masoumi & Hans-Liudger Dienel, 2020. "The Association between Regular Use of Ridesourcing and Walking Mode Choice in Cairo and Tehran," Sustainability, MDPI, vol. 12(14), pages 1-16, July.
    23. Jixiang Liu & Longzhu Xiao, 2024. "Socioeconomic differences in effect size: predicting commuting mode choice of migrants and locals using a light gradient boosting approach," Transportation, Springer, vol. 51(1), pages 1-24, February.
    24. Faan Chen & Adriano Borges Costa, 2024. "Exploring the causal effects of the built environment on travel behavior: a unique randomized experiment in Shanghai," Transportation, Springer, vol. 51(1), pages 215-245, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Etminani-Ghasrodashti, Roya & Ardeshiri, Mahyar, 2015. "Modeling travel behavior by the structural relationships between lifestyle, built environment and non-working trips," Transportation Research Part A: Policy and Practice, Elsevier, vol. 78(C), pages 506-518.
    2. Ding, Yu & Lu, Huapu, 2016. "Activity participation as a mediating variable to analyze the effect of land use on travel behavior: A structural equation modeling approach," Journal of Transport Geography, Elsevier, vol. 52(C), pages 23-28.
    3. Jonas De Vos & Long Cheng & Frank Witlox, 2021. "Do changes in the residential location lead to changes in travel attitudes? A structural equation modeling approach," Transportation, Springer, vol. 48(4), pages 2011-2034, August.
    4. Lin, Tao & Wang, Donggen & Guan, Xiaodong, 2017. "The built environment, travel attitude, and travel behavior: Residential self-selection or residential determination?," Journal of Transport Geography, Elsevier, vol. 65(C), pages 111-122.
    5. Guan, Xiaodong & Wang, Donggen, 2019. "Influences of the built environment on travel: A household-based perspective," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 710-724.
    6. Phani Kumar, P. & Ravi Sekhar, Ch. & Parida, Manoranjan, 2018. "Residential dissonance in TOD neighborhoods," Journal of Transport Geography, Elsevier, vol. 72(C), pages 166-177.
    7. Mitra, Suman & Yao, Mingqi & Ritchie, Stephen G., 2021. "Gender differences in elderly mobility in the United States," Transportation Research Part A: Policy and Practice, Elsevier, vol. 154(C), pages 203-226.
    8. Dillon, Harya S. & Saphores, Jean-Daniel & Boarnet, Marlon G., 2015. "The impact of urban form and gasoline prices on vehicle usage: Evidence from the 2009 National Household Travel Survey," Research in Transportation Economics, Elsevier, vol. 52(C), pages 23-33.
    9. Chowdhury, Tufayel & Scott, Darren M., 2020. "An analysis of the built environment and auto travel in Halifax, Canada," Transport Policy, Elsevier, vol. 94(C), pages 23-33.
    10. De Vos, Jonas & Cheng, Long & Kamruzzaman, Md. & Witlox, Frank, 2021. "The indirect effect of the built environment on travel mode choice: A focus on recent movers," Journal of Transport Geography, Elsevier, vol. 91(C).
    11. Li, Jingjing & Kim, Changjoo & Sang, Sunhee, 2018. "Exploring impacts of land use characteristics in residential neighborhood and activity space on non-work travel behaviors," Journal of Transport Geography, Elsevier, vol. 70(C), pages 141-147.
    12. Chetan Doddamani & M. Manoj, 2023. "Analysis of the influences of built environment measures on household car and motorcycle ownership decisions in Hubli-Dharwad cities," Transportation, Springer, vol. 50(1), pages 205-243, February.
    13. Faizeh Hatami & Jean-Claude Thill, 2022. "Spatiotemporal Evaluation of the Built Environment’s Impact on Commuting Duration," Sustainability, MDPI, vol. 14(12), pages 1-19, June.
    14. Xinyu Cao & Patricia L. Mokhtarian, 2012. "The connections among accessibility, self- selection and walking behaviour: a case study of Northern California residents," Chapters, in: Karst T. Geurs & Kevin J. Krizek & Aura Reggiani (ed.), Accessibility Analysis and Transport Planning, chapter 5, pages 73-95, Edward Elgar Publishing.
    15. Enayat Mirzaei & Dominique Mignot, 2021. "An Empirical Analysis of Mode Choice Decision for Utilitarian and Hedonic Trips: Evidence from Iran," Sustainability, MDPI, vol. 13(12), pages 1-23, June.
    16. Cao, Xinyu, 2006. "The Causal Relationship between the Built Environment and Personal Travel Choice: Evidence from Northern California," University of California Transportation Center, Working Papers qt07q5p340, University of California Transportation Center.
    17. Haitao Yu & Zhong-Ren Peng, 2020. "The impacts of built environment on ridesourcing demand: A neighbourhood level analysis in Austin, Texas," Urban Studies, Urban Studies Journal Limited, vol. 57(1), pages 152-175, January.
    18. de Abreu e Silva, João & Morency, Catherine & Goulias, Konstadinos G., 2012. "Using structural equations modeling to unravel the influence of land use patterns on travel behavior of workers in Montreal," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(8), pages 1252-1264.
    19. Tae-Hyoung Gim, 2012. "A meta-analysis of the relationship between density and travel behavior," Transportation, Springer, vol. 39(3), pages 491-519, May.
    20. Ali Ardeshiri & Akshay Vij, 2019. "A lifestyle-based model of household neighbourhood location and individual travel mode choice behaviours," Papers 1902.01986, arXiv.org, revised Nov 2019.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:85:y:2016:i:c:p:196-207. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.