IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v165y2022icp186-206.html
   My bibliography  Save this article

The impact of high-occupancy vehicle lanes on carpooling

Author

Listed:
  • Cohen, Maxime C.
  • Jacquillat, Alexandre
  • Ratzon, Avia
  • Sasson, Roy

Abstract

Since the 1970s, high-occupancy vehicle (HOV) lanes have been a common policy instrument to mitigate traffic congestion. Yet, their effectiveness remains a controversial topic among researchers, policy makers, and the public. In this debate, a key unknown has been the impact of HOV lanes on commuters’ carpooling behaviors. This paper brings a new piece of evidence by offering a data-driven assessment of carpooling intent and adoption, using revealed-preferences data. We partner with Waze, a major carpooling platform, and leverage a natural experiment following the introduction of three HOV lanes in Israel in 2019. Using tailored treatment and control groups coupled with econometric analyses, we derive four main findings. First, HOV lanes bring new users to the carpooling platform, which contributes to alleviating the “cold-start” problem in the marketplace. Second, HOV lanes have a positive impact on carpool intent: the number of carpool offers sent by drivers increase manifold following the introduction of the HOV lanes. Third, HOV lanes have a disparate impact on carpool adoption: carpools increase significantly for two out of three HOV lanes. This result underscores the critical impact of HOV lanes design: it seems more beneficial to have round-trip HOV lanes (as opposed to one-way lanes) and two-passenger occupancy requirements (as opposed to three-passenger requirements). Last, HOV lanes have a broader impact, by increasing carpooling on non-HOV routes and shifting the travel behaviors of non-carpoolers. We conclude by discussing policy implications, highlighting collaboration opportunities between policy makers and digital carpooling platforms to enhance the design and operations of HOV lanes.

Suggested Citation

  • Cohen, Maxime C. & Jacquillat, Alexandre & Ratzon, Avia & Sasson, Roy, 2022. "The impact of high-occupancy vehicle lanes on carpooling," Transportation Research Part A: Policy and Practice, Elsevier, vol. 165(C), pages 186-206.
  • Handle: RePEc:eee:transa:v:165:y:2022:i:c:p:186-206
    DOI: 10.1016/j.tra.2022.08.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856422002257
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2022.08.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vanoutrive, Thomas & Van De Vijver, Elien & Van Malderen, Laurent & Jourquin, Bart & Thomas, Isabelle & Verhetsel, Ann & Witlox, Frank, 2012. "What determines carpooling to workplaces in Belgium: location, organisation, or promotion?," Journal of Transport Geography, Elsevier, vol. 22(C), pages 77-86.
    2. Johnston, Robert & Ceerla, Raju, 1996. "The Effects of New High-Occupancy Vehicle Lanes on Travel and Emissions," Institute of Transportation Studies, Working Paper Series qt32f144w7, Institute of Transportation Studies, UC Davis.
    3. Konishi, Hideo & Mun, Se-il, 2010. "Carpooling and congestion pricing: HOV and HOT lanes," Regional Science and Urban Economics, Elsevier, vol. 40(4), pages 173-186, July.
    4. Johnston, Robert A. & Ceerla, Raju, 1996. "The effects of new high-occupancy vehicle lanes on travel and emissions," Transportation Research Part A: Policy and Practice, Elsevier, vol. 30(1), pages 35-50, January.
    5. Boysen, Nils & Briskorn, Dirk & Schwerdfeger, Stefan & Stephan, Konrad, 2021. "Optimizing carpool formation along high-occupancy vehicle lanes," European Journal of Operational Research, Elsevier, vol. 293(3), pages 1097-1112.
    6. Mote, Jonathon E. & Whitestone, Yuko, 2011. "The social context of informal commuting: Slugs, strangers and structuration," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(4), pages 258-268, May.
    7. Daganzo, Carlos F. & Cassidy, Michael J., 2008. "Effects of high occupancy vehicle lanes on freeway congestion," Transportation Research Part B: Methodological, Elsevier, vol. 42(10), pages 861-872, December.
    8. Yang, Hai & Huang, Hai-Jun, 1999. "Carpooling and congestion pricing in a multilane highway with high-occupancy-vehicle lanes," Transportation Research Part A: Policy and Practice, Elsevier, vol. 33(2), pages 139-155, February.
    9. Hanna, Rema & Kreindler, Gabriel & Olken, Benjamin A., 2016. "Citywide Effects of High-Occupancy Vehicle Restrictions: Evidence from the Elimination of "3-in-1" in Jakarta," Working Paper Series rwp17-008, Harvard University, John F. Kennedy School of Government.
    10. Dahlgren, Joy, 1998. "High occupancy vehicle lanes: Not always more effective than general purpose lanes," Transportation Research Part A: Policy and Practice, Elsevier, vol. 32(2), pages 99-114, February.
    11. Menendez, Monica & Daganzo, Carlos F., 2007. "Effects of HOV lanes on freeway bottlenecks," Transportation Research Part B: Methodological, Elsevier, vol. 41(8), pages 809-822, October.
    12. Dunning,Thad, 2012. "Natural Experiments in the Social Sciences," Cambridge Books, Cambridge University Press, number 9781107017665, November.
    13. Jun Guan Neoh & Maxwell Chipulu & Alasdair Marshall, 2017. "What encourages people to carpool? An evaluation of factors with meta-analysis," Transportation, Springer, vol. 44(2), pages 423-447, March.
    14. Shaheen, Susan PhD & Chan, Nelson & Gaynor, Theresa, 2016. "Casual Carpooling in the San Francisco Bay Area: Understanding User Characteristics, Behaviors, and Motivations," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt4dh2h0rf, Institute of Transportation Studies, UC Berkeley.
    15. Anderson, Paul & Geroliminis, Nikolas, 2020. "Dynamic lane restrictions on congested arterials," Transportation Research Part A: Policy and Practice, Elsevier, vol. 135(C), pages 224-243.
    16. Dunning,Thad, 2012. "Natural Experiments in the Social Sciences," Cambridge Books, Cambridge University Press, number 9781107698000, November.
    17. VANOUTRIVE, Thomas & VAN CDE VIJVER, Elien & VAN MALDEREN, Lautrent & JOURQUIN, Bart, 2012. "What determines carpooling to workplaces in Belgium: location, organisation, or promotion?," LIDAM Reprints CORE 2418, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    18. Brown, Anne E., 2020. "Who and where rideshares? Rideshare travel and use in Los Angeles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 136(C), pages 120-134.
    19. Laval, Jorge A. & Daganzo, Carlos F., 2006. "Lane-changing in traffic streams," Transportation Research Part B: Methodological, Elsevier, vol. 40(3), pages 251-264, March.
    20. Zhong, Lin & Zhang, Kenan & (Marco) Nie, Yu & Xu, Jiuping, 2020. "Dynamic carpool in morning commute: Role of high-occupancy-vehicle (HOV) and high-occupancy-toll (HOT) lanes," Transportation Research Part B: Methodological, Elsevier, vol. 135(C), pages 98-119.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiao, Ling-Ling & Liu, Tian-Liang & Huang, Hai-Jun & Liu, Ronghui, 2021. "Temporal-spatial allocation of bottleneck capacity for managing morning commute with carpool," Transportation Research Part B: Methodological, Elsevier, vol. 143(C), pages 177-200.
    2. Wenyuan Zhou & Xuanrong Li & Zhenguo Shi & Bingjie Yang & Dongxu Chen, 2023. "Impact of Carpooling under Mobile Internet on Travel Mode Choices and Urban Traffic Volume: The Case of China," Sustainability, MDPI, vol. 15(8), pages 1-15, April.
    3. Anne Aguiléra & Eléonore Pigalle, 2021. "The Future and Sustainability of Carpooling Practices. An Identification of Research Challenges," Sustainability, MDPI, vol. 13(21), pages 1-16, October.
    4. Julie Bulteau & Thierry Feuillet & Sophie Dantan & Souhir Abbes, 2023. "Encouraging carpooling for commuting in the Paris area (France): which incentives and for whom?," Transportation, Springer, vol. 50(1), pages 43-62, February.
    5. Cassidy, Michael J. & Jang, Kitae & Daganzo, Carlos F., 2010. "The smoothing effect of carpool lanes on freeway bottlenecks," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(2), pages 65-75, February.
    6. Yi, Xu & Lian, Feng & Yang, Zhongzhen, 2022. "Research on commuters’ carpooling behavior in the mobile internet context," Transport Policy, Elsevier, vol. 126(C), pages 14-25.
    7. Craig Standing & Ferry Jie & Thi Le & Susan Standing & Sharon Biermann, 2021. "Analysis of the Use and Perception of Shared Mobility: A Case Study in Western Australia," Sustainability, MDPI, vol. 13(16), pages 1-14, August.
    8. Santos, Georgina & Behrendt, Hannah & Teytelboym, Alexander, 2010. "Part II: Policy instruments for sustainable road transport," Research in Transportation Economics, Elsevier, vol. 28(1), pages 46-91.
    9. Julie Bulteau & Thierry Feuillet & Sophie Dantan, 2019. "Carpooling and carsharing for commuting in the Paris region: A comprehensive exploration of the individual and contextual correlates of their uses," Post-Print hal-02113257, HAL.
    10. Yao, Jia & Cheng, Zhanhong & Shi, Feng & An, Shi & Wang, Jian, 2018. "Evaluation of exclusive bus lanes in a tri-modal road network incorporating carpooling behavior," Transport Policy, Elsevier, vol. 68(C), pages 130-141.
    11. María del Carmen Rey-Merchán & Antonio López-Arquillos & Manuela Pires Rosa & Jesús Manuel Gómez-de-Gabriel, 2022. "Proposal for an Institutional Carpooling System among Workers from the Public-Education Sector," Sustainability, MDPI, vol. 14(21), pages 1-10, November.
    12. Jang, Kitae & Cassidy, Michael J., 2012. "Dual influences on vehicle speed in special-use lanes and critique of US regulation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(7), pages 1108-1123.
    13. Jang, Kitae & Cassidy, Michael J., 2011. "Dual Influences on Vehicle Speeds in Special-Use Lanes and Policy Implications," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt0dd859tf, Institute of Transportation Studies, UC Berkeley.
    14. Bento, Antonio M. & Hughes, Jonathan E. & Kaffine, Daniel, 2013. "Carpooling and driver responses to fuel price changes: Evidence from traffic flows in Los Angeles," Journal of Urban Economics, Elsevier, vol. 77(C), pages 41-56.
    15. Benita, Francisco, 2020. "Carpool to work: Determinants at the county-level in the United States," Journal of Transport Geography, Elsevier, vol. 87(C).
    16. Saxena, Aditya & Gupta, Vallary, 2023. "Carpooling: Who is closest to adopting it? An investigation into the potential car-poolers among private vehicle users: A case of a developing country, India," Transport Policy, Elsevier, vol. 135(C), pages 11-20.
    17. Lazarus, Jessica R. & Caicedo, Juan D. & Bayen, Alexandre M. & Shaheen, Susan A., 2021. "To Pool or Not to Pool? Understanding opportunities, challenges, and equity considerations to expanding the market for pooling," Transportation Research Part A: Policy and Practice, Elsevier, vol. 148(C), pages 199-222.
    18. Zheng, Zuduo, 2014. "Recent developments and research needs in modeling lane changing," Transportation Research Part B: Methodological, Elsevier, vol. 60(C), pages 16-32.
    19. Jin, Wen-Long, 2013. "A multi-commodity Lighthill–Whitham–Richards model of lane-changing traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 361-377.
    20. Zipeng Zhang & Ning Zhang, 2021. "The Morning Commute Problem with Ridesharing When Meet Stochastic Bottleneck," Sustainability, MDPI, vol. 13(11), pages 1-13, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:165:y:2022:i:c:p:186-206. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.