IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v144y2021icp74-88.html
   My bibliography  Save this article

Elaborating non-linear associations and synergies of subway access and land uses with urban vitality in Shenzhen

Author

Listed:
  • Yang, Jiawen
  • Cao, Jason
  • Zhou, Yufei

Abstract

Previous studies on the built environment and urban vitality often assume that they follow a pre-defined (mostly linear in parameters) relationship, and few studies substantiate whether high-quality transit (T) and supportive land development (D) are synergistic to vibrant urban places. This study employs gradient boosting decision trees to examine the irregularly non-linear associations between the built environment and urban vitality, using Shenzhen as the case study and the Baidu Heat Index as a proxy for vitality. It reveals that their associations change drastically past some thresholds of built environment attributes, and that there are non-linear synergies between T and D. The findings provide guidance for neighborhood planning and have implications for cities that seek transit investments and transit-oriented development.

Suggested Citation

  • Yang, Jiawen & Cao, Jason & Zhou, Yufei, 2021. "Elaborating non-linear associations and synergies of subway access and land uses with urban vitality in Shenzhen," Transportation Research Part A: Policy and Practice, Elsevier, vol. 144(C), pages 74-88.
  • Handle: RePEc:eee:transa:v:144:y:2021:i:c:p:74-88
    DOI: 10.1016/j.tra.2020.11.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856420307862
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2020.11.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Stephen T. Ziliak & Deirdre N. McCloskey, 2004. "Size Matters: The Standard Error of Regressions in the American Economic Review," Econ Journal Watch, Econ Journal Watch, vol. 1(2), pages 331-358, August.
    2. Yang, Jiawen & Su, Pinren & Cao, Jason, 2020. "On the importance of Shenzhen metro transit to land development and threshold effect," Transport Policy, Elsevier, vol. 99(C), pages 1-11.
    3. Ding, Chuan & Cao, Xinyu & Wang, Yunpeng, 2018. "Synergistic effects of the built environment and commuting programs on commute mode choice," Transportation Research Part A: Policy and Practice, Elsevier, vol. 118(C), pages 104-118.
    4. Yang, Jiawen & Chen, Junxian & Le, Xiaohui & Zhang, Qin, 2016. "Density-oriented versus development-oriented transit investment: Decoding metro station location selection in Shenzhen," Transport Policy, Elsevier, vol. 51(C), pages 93-102.
    5. Wenjia Zhang & Ming Zhang, 2018. "Incorporating land use and pricing policies for reducing car dependence: Analytical framework and empirical evidence," Urban Studies, Urban Studies Journal Limited, vol. 55(13), pages 3012-3033, October.
    6. Ding, Chuan & Cao, Xinyu (Jason) & Næss, Petter, 2018. "Applying gradient boosting decision trees to examine non-linear effects of the built environment on driving distance in Oslo," Transportation Research Part A: Policy and Practice, Elsevier, vol. 110(C), pages 107-117.
    7. Maas, Suzanne & Attard, Maria & Caruana, Mark Anthony, 2020. "Assessing spatial and social dimensions of shared bicycle use in a Southern European island context: The case of Las Palmas de Gran Canaria," Transportation Research Part A: Policy and Practice, Elsevier, vol. 140(C), pages 81-97.
    8. Cao, Xinyu (Jason) & Porter-Nelson, Dean, 2016. "Real estate development in anticipation of the Green Line light rail transit in St. Paul," Transport Policy, Elsevier, vol. 51(C), pages 24-32.
    9. Zheng, Siqi & Hu, Xiaoke & Wang, Jianghao & Wang, Rui, 2016. "Subways near the subway: Rail transit and neighborhood catering businesses in Beijing," Transport Policy, Elsevier, vol. 51(C), pages 81-92.
    10. Chris Hale, 2014. "TOD Versus TAD: The Great Debate Resolved...(?)," Planning Practice & Research, Taylor & Francis Journals, vol. 29(5), pages 492-507, October.
    11. Yang, Jiawen & Quan, Jige & Yan, Bin & He, Canfei, 2016. "Urban rail investment and transit-oriented development in Beijing: Can it reach a higher potential?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 89(C), pages 140-150.
    12. Luca Bertolini, 2008. "Station areas as nodes and places in urban networks: An analytical tool and alternative development strategies," Springer Books, in: Frank Bruinsma & Eric Pels & Piet Rietveld & Hugo Priemus & Bert Wee (ed.), Railway Development, chapter 3, pages 35-57, Springer.
    13. Zhan Guo & Asha Agrawal & Jennifer Dill, 2011. "Are Land Use Planning and Congestion Pricing Mutually Supportive?," Journal of the American Planning Association, Taylor & Francis Journals, vol. 77(3), pages 232-250.
    14. Wenze Yue & Yang Chen & Qun Zhang & Yong Liu, 2019. "Spatial Explicit Assessment of Urban Vitality Using Multi-Source Data: A Case of Shanghai, China," Sustainability, MDPI, vol. 11(3), pages 1-20, January.
    15. Weichang Kong & Dorina Pojani, 2017. "Transit-oriented street design in Beijing," Journal of Urban Design, Taylor & Francis Journals, vol. 22(3), pages 388-410, May.
    16. Singh, Yamini Jain & Lukman, Azhari & Flacke, Johannes & Zuidgeest, Mark & Van Maarseveen, M.F.A.M., 2017. "Measuring TOD around transit nodes - Towards TOD policy," Transport Policy, Elsevier, vol. 56(C), pages 96-111.
    17. Boarnet, Marlon G., 2010. "Planning, climate change, and transportation: Thoughts on policy analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(8), pages 587-595, October.
    18. Jacobson, Justin & Forsyth, Ann, 2008. "Seven American TODs: Good Practices for Urban Design in Transit-Oriented Development Projects," The Journal of Transport and Land Use, Center for Transportation Studies, University of Minnesota, vol. 1(2), pages 51-88.
    19. Song, Yan & Knaap, Gerrit-Jan, 2003. "New urbanism and housing values: a disaggregate assessment," Journal of Urban Economics, Elsevier, vol. 54(2), pages 218-238, September.
    20. Shao, Qifan & Zhang, Wenjia & Cao, Xinyu & Yang, Jiawen & Yin, Jie, 2020. "Threshold and moderating effects of land use on metro ridership in Shenzhen: Implications for TOD planning," Journal of Transport Geography, Elsevier, vol. 89(C).
    21. Li, Peilin & Zhao, Pengjun & Schwanen, Tim, 2020. "Effect of land use on shopping trips in station areas: Examining sensitivity to scale," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 969-985.
    22. Daniel G. Chatman, 2013. "Does TOD Need the T?," Journal of the American Planning Association, Taylor & Francis Journals, vol. 79(1), pages 17-31, January.
    23. Ding, Chuan & Cao, Xinyu & Liu, Chao, 2019. "How does the station-area built environment influence Metrorail ridership? Using gradient boosting decision trees to identify non-linear thresholds," Journal of Transport Geography, Elsevier, vol. 77(C), pages 70-78.
    24. Yan, Xiang & Liu, Xinyu & Zhao, Xilei, 2020. "Using machine learning for direct demand modeling of ridesourcing services in Chicago," Journal of Transport Geography, Elsevier, vol. 83(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jinyao Lin & Yaye Zhuang & Yang Zhao & Hua Li & Xiaoyu He & Siyan Lu, 2022. "Measuring the Non-Linear Relationship between Three-Dimensional Built Environment and Urban Vitality Based on a Random Forest Model," IJERPH, MDPI, vol. 20(1), pages 1-18, December.
    2. Tao, Tao & Cao, Jason, 2022. "Examining motivations for owning autonomous vehicles: Implications for land use and transportation," Journal of Transport Geography, Elsevier, vol. 102(C).
    3. Li, Zhitao & Tang, Jinjun & Zhao, Chuyun & Gao, Fan, 2023. "Improved centrality measure based on the adapted PageRank algorithm for urban transportation multiplex networks," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    4. Hu, Songhua & Xiong, Chenfeng & Chen, Peng & Schonfeld, Paul, 2023. "Examining nonlinearity in population inflow estimation using big data: An empirical comparison of explainable machine learning models," Transportation Research Part A: Policy and Practice, Elsevier, vol. 174(C).
    5. Su, Shiliang & Wang, Zhuolun & Li, Bozhao & Kang, Mengjun, 2022. "Deciphering the influence of TOD on metro ridership: An integrated approach of extended node-place model and interpretable machine learning with planning implications," Journal of Transport Geography, Elsevier, vol. 104(C).
    6. Zhesong Hao & Ying Peng, 2022. "Comparing Nonlinear and Threshold Effects of Bus Stop Proximity on Transit Use and Carbon Emissions in Developing Cities," Land, MDPI, vol. 12(1), pages 1-21, December.
    7. Tao, Tao & Cao, Jason, 2023. "Exploring nonlinear and collective influences of regional and local built environment characteristics on travel distances by mode," Journal of Transport Geography, Elsevier, vol. 109(C).
    8. Mingwei He & Jianbo Li & Zhuangbin Shi & Yang Liu & Chunyan Shuai & Jie Liu, 2022. "Exploring the Nonlinear and Threshold Effects of Travel Distance on the Travel Mode Choice across Different Groups: An Empirical Study of Guiyang, China," IJERPH, MDPI, vol. 19(23), pages 1-23, November.
    9. Ding, Chuan & Cao, Xinyu & Yu, Bin & Ju, Yang, 2021. "Non-linear associations between zonal built environment attributes and transit commuting mode choice accounting for spatial heterogeneity," Transportation Research Part A: Policy and Practice, Elsevier, vol. 148(C), pages 22-35.
    10. Haize Pan & Chuan Yang & Lirong Quan & Longhui Liao, 2021. "A New Insight into Understanding Urban Vitality: A Case Study in the Chengdu-Chongqing Area Twin-City Economic Circle, China," Sustainability, MDPI, vol. 13(18), pages 1-19, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Jiawen & Su, Pinren & Cao, Jason, 2020. "On the importance of Shenzhen metro transit to land development and threshold effect," Transport Policy, Elsevier, vol. 99(C), pages 1-11.
    2. Yang, Hongtai & Zheng, Rong & Li, Xuan & Huo, Jinghai & Yang, Linchuan & Zhu, Tong, 2022. "Nonlinear and threshold effects of the built environment on e-scooter sharing ridership," Journal of Transport Geography, Elsevier, vol. 104(C).
    3. Du, Qiang & Zhou, Yuqing & Huang, Youdan & Wang, Yalei & Bai, Libiao, 2022. "Spatiotemporal exploration of the non-linear impacts of accessibility on metro ridership," Journal of Transport Geography, Elsevier, vol. 102(C).
    4. Shao, Qifan & Zhang, Wenjia & Cao, Xinyu & Yang, Jiawen & Yin, Jie, 2020. "Threshold and moderating effects of land use on metro ridership in Shenzhen: Implications for TOD planning," Journal of Transport Geography, Elsevier, vol. 89(C).
    5. Qiaoling Fang & Tomo Inoue & Dongqi Li & Qiang Liu & Jian Ma, 2023. "Transit-Oriented Development and Sustainable Cities: A Visual Analysis of the Literature Based on CiteSpace and VOSviewer," Sustainability, MDPI, vol. 15(10), pages 1-18, May.
    6. Ying Liang & Wei Song & Xiaofeng Dong, 2021. "Evaluating the Space Use of Large Railway Hub Station Areas in Beijing toward Integrated Station-City Development," Land, MDPI, vol. 10(11), pages 1-22, November.
    7. Liu, Jixiang & Wang, Bo & Xiao, Longzhu, 2021. "Non-linear associations between built environment and active travel for working and shopping: An extreme gradient boosting approach," Journal of Transport Geography, Elsevier, vol. 92(C).
    8. Zhang, Xiaojian & Zhao, Xilei, 2022. "Machine learning approach for spatial modeling of ridesourcing demand," Journal of Transport Geography, Elsevier, vol. 100(C).
    9. Ding, Chuan & Cao, Xinyu & Yu, Bin & Ju, Yang, 2021. "Non-linear associations between zonal built environment attributes and transit commuting mode choice accounting for spatial heterogeneity," Transportation Research Part A: Policy and Practice, Elsevier, vol. 148(C), pages 22-35.
    10. Xu, Yiming & Yan, Xiang & Liu, Xinyu & Zhao, Xilei, 2021. "Identifying key factors associated with ridesplitting adoption rate and modeling their nonlinear relationships," Transportation Research Part A: Policy and Practice, Elsevier, vol. 144(C), pages 170-188.
    11. Ibraeva, Anna & Correia, Gonçalo Homem de Almeida & Silva, Cecília & Antunes, António Pais, 2020. "Transit-oriented development: A review of research achievements and challenges," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 110-130.
    12. Shao, Qifan & Zhang, Wenjia & Cao, Xinyu (Jason) & Yang, Jiawen, 2023. "Built environment interventions for emission mitigation: A machine learning analysis of travel-related CO2 in a developing city," Journal of Transport Geography, Elsevier, vol. 110(C).
    13. Laviolette, Jérôme & Morency, Catherine & Waygood, E.O.D., 2022. "A kilometer or a mile? Does buffer size matter when it comes to car ownership?," Journal of Transport Geography, Elsevier, vol. 104(C).
    14. Yin, Chun & Cao, Jason & Sun, Bindong & Liu, Jiahang, 2023. "Exploring built environment correlates of walking for different purposes: Evidence for substitution," Journal of Transport Geography, Elsevier, vol. 106(C).
    15. Li, Jianyi & Huang, Hao, 2020. "Effects of transit-oriented development (TOD) on housing prices: A case study in Wuhan, China," Research in Transportation Economics, Elsevier, vol. 80(C).
    16. Tao, Tao & Wang, Jueyu & Cao, Xinyu, 2020. "Exploring the non-linear associations between spatial attributes and walking distance to transit," Journal of Transport Geography, Elsevier, vol. 82(C).
    17. Ding, Chuan & Cao, Xinyu & Wang, Yunpeng, 2018. "Synergistic effects of the built environment and commuting programs on commute mode choice," Transportation Research Part A: Policy and Practice, Elsevier, vol. 118(C), pages 104-118.
    18. Tao, Tao & Cao, Jason, 2023. "Exploring nonlinear and collective influences of regional and local built environment characteristics on travel distances by mode," Journal of Transport Geography, Elsevier, vol. 109(C).
    19. Liang Guo & Shuo Yang & Qinghao Zhang & Leyu Zhou & Hui He, 2023. "Examining the Nonlinear and Synergistic Effects of Multidimensional Elements on Commuting Carbon Emissions: A Case Study in Wuhan, China," IJERPH, MDPI, vol. 20(2), pages 1-28, January.
    20. Bi, Hui & Li, Aoyong & Hua, Mingzhuang & Zhu, He & Ye, Zhirui, 2022. "Examining the varying influences of built environment on bike-sharing commuting: Empirical evidence from Shanghai," Transport Policy, Elsevier, vol. 129(C), pages 51-65.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:144:y:2021:i:c:p:74-88. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.