IDEAS home Printed from https://ideas.repec.org/a/eee/tefoso/v191y2023ics0040162523001890.html
   My bibliography  Save this article

A new perspective on air quality index time series forecasting: A ternary interval decomposition ensemble learning paradigm

Author

Listed:
  • Wang, Zicheng
  • Gao, Ruobin
  • Wang, Piao
  • Chen, Huayou

Abstract

Accurate forecasting of the air quality index (AQI) plays a crucial role in taking precautions against upcoming air pollution risks. However, air quality may fluctuate greatly in a certain period. Existing forecasting approaches always face the problem of losing valuable information on air quality status, even in the interval models of recent research. To address this issue, this paper suggests a new AQI forecasting perspective and paradigm built upon ternary interval-valued time series (TITS), multivariate variational mode decomposition (MVMD), multivariate relevance vector machine (MVRVM), mixed coding particle swarm optimization (MCPSO), and meteorological factors, which is able to capture the trend and volatility changes of AQI concurrently. The proposed paradigm involves four procedures: TITS construction in terms of the daily minimum, daily mean, and daily maximum AQI, multi-scale decomposition via MVMD, individual forecasting by MCPSO-optimized MVRVM, and ensemble learning forecasting using a simple addition approach. Experiments based on datasets collected from four municipalities in China demonstrated that the presented paradigm can hit higher accuracy than other comparable models, and the application analysis also shows that it has application potential in the AQI online forecasting system. To conclude, the proposed paradigm provides a promising alternative for AQI time series forecasting.

Suggested Citation

  • Wang, Zicheng & Gao, Ruobin & Wang, Piao & Chen, Huayou, 2023. "A new perspective on air quality index time series forecasting: A ternary interval decomposition ensemble learning paradigm," Technological Forecasting and Social Change, Elsevier, vol. 191(C).
  • Handle: RePEc:eee:tefoso:v:191:y:2023:i:c:s0040162523001890
    DOI: 10.1016/j.techfore.2023.122504
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040162523001890
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.techfore.2023.122504?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yu, Lean & Ma, Yueming & Ma, Mengyao, 2021. "An effective rolling decomposition-ensemble model for gasoline consumption forecasting," Energy, Elsevier, vol. 222(C).
    2. Tao Xiong & Yukun Bao & Zhongyi Hu, 2014. "Multiple-output support vector regression with a firefly algorithm for interval-valued stock price index forecasting," Papers 1401.1916, arXiv.org.
    3. Zi‐yu Chen & Fei Xiao & Xiao‐kang Wang & Min‐hui Deng & Jian‐qiang Wang & Jun‐Bo Li, 2022. "Stochastic configuration network based on improved whale optimization algorithm for nonstationary time series prediction," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(7), pages 1458-1482, November.
    4. Ding, Jia & Wang, Maolin & Ping, Zuowei & Fu, Dongfei & Vassiliadis, Vassilios S., 2020. "An integrated method based on relevance vector machine for short-term load forecasting," European Journal of Operational Research, Elsevier, vol. 287(2), pages 497-510.
    5. Javier Arroyo & Rosa Espínola & Carlos Maté, 2011. "Different Approaches to Forecast Interval Time Series: A Comparison in Finance," Computational Economics, Springer;Society for Computational Economics, vol. 37(2), pages 169-191, February.
    6. Xiao, Yu-jie & Wang, Xiao-kang & Wang, Jian-qiang & Zhang, Hong-yu, 2021. "An adaptive decomposition and ensemble model for short-term air pollutant concentration forecast using ICEEMDAN-ICA," Technological Forecasting and Social Change, Elsevier, vol. 166(C).
    7. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    8. Gao, Feng & Shao, Xueyan, 2022. "A novel interval decomposition ensemble model for interval carbon price forecasting," Energy, Elsevier, vol. 243(C).
    9. Zhang, Xiaobo & Wang, Jianzhou & Gao, Yuyang, 2019. "A hybrid short-term electricity price forecasting framework: Cuckoo search-based feature selection with singular spectrum analysis and SVM," Energy Economics, Elsevier, vol. 81(C), pages 899-913.
    10. Jamei, Mehdi & Ali, Mumtaz & Karbasi, Masoud & Xiang, Yong & Ahmadianfar, Iman & Yaseen, Zaher Mundher, 2022. "Designing a Multi-Stage Expert System for daily ocean wave energy forecasting: A multivariate data decomposition-based approach," Applied Energy, Elsevier, vol. 326(C).
    11. Huang, Yanmei & Hasan, Najmul & Deng, Changrui & Bao, Yukun, 2022. "Multivariate empirical mode decomposition based hybrid model for day-ahead peak load forecasting," Energy, Elsevier, vol. 239(PC).
    12. Chen, Shuixia & Wang, Jian-qiang & Zhang, Hong-yu, 2019. "A hybrid PSO-SVM model based on clustering algorithm for short-term atmospheric pollutant concentration forecasting," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 41-54.
    13. Maia, André Luis Santiago & de Carvalho, Francisco de A.T., 2011. "Holt’s exponential smoothing and neural network models for forecasting interval-valued time series," International Journal of Forecasting, Elsevier, vol. 27(3), pages 740-759.
    14. Agrawal, Rahul Kumar & Muchahary, Frankle & Tripathi, Madan Mohan, 2019. "Ensemble of relevance vector machines and boosted trees for electricity price forecasting," Applied Energy, Elsevier, vol. 250(C), pages 540-548.
    15. Sun, Shaolong & Sun, Yuying & Wang, Shouyang & Wei, Yunjie, 2018. "Interval decomposition ensemble approach for crude oil price forecasting," Energy Economics, Elsevier, vol. 76(C), pages 274-287.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiaan Zhang & Yan Hao & Ruiqing Fan & Zhenzhen Wang, 2023. "An Ultra-Short-Term PV Power Forecasting Method for Changeable Weather Based on Clustering and Signal Decomposition," Energies, MDPI, vol. 16(7), pages 1-15, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Piao Wang & Shahid Hussain Gurmani & Zhifu Tao & Jinpei Liu & Huayou Chen, 2024. "Interval time series forecasting: A systematic literature review," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(2), pages 249-285, March.
    2. Dai, Yeming & Yang, Xinyu & Leng, Mingming, 2022. "Forecasting power load: A hybrid forecasting method with intelligent data processing and optimized artificial intelligence," Technological Forecasting and Social Change, Elsevier, vol. 182(C).
    3. Matheus Henrique Dal Molin Ribeiro & Stéfano Frizzo Stefenon & José Donizetti de Lima & Ademir Nied & Viviana Cocco Mariani & Leandro dos Santos Coelho, 2020. "Electricity Price Forecasting Based on Self-Adaptive Decomposition and Heterogeneous Ensemble Learning," Energies, MDPI, vol. 13(19), pages 1-22, October.
    4. Leandro Maciel & Rosangela Ballini, 2021. "Functional Fuzzy Rule-Based Modeling for Interval-Valued Data: An Empirical Application for Exchange Rates Forecasting," Computational Economics, Springer;Society for Computational Economics, vol. 57(2), pages 743-771, February.
    5. Xiong, Tao & Li, Chongguang & Bao, Yukun, 2017. "Interval-valued time series forecasting using a novel hybrid HoltI and MSVR model," Economic Modelling, Elsevier, vol. 60(C), pages 11-23.
    6. Hu, Zhongyi & Bao, Yukun & Chiong, Raymond & Xiong, Tao, 2015. "Mid-term interval load forecasting using multi-output support vector regression with a memetic algorithm for feature selection," Energy, Elsevier, vol. 84(C), pages 419-431.
    7. Paulo Rodrigues & Nazarii Salish, 2015. "Modeling and forecasting interval time series with threshold models," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 9(1), pages 41-57, March.
    8. Jasiński, Tomasz, 2020. "Use of new variables based on air temperature for forecasting day-ahead spot electricity prices using deep neural networks: A new approach," Energy, Elsevier, vol. 213(C).
    9. Yang, Dongchuan & Guo, Ju-e & Sun, Shaolong & Han, Jing & Wang, Shouyang, 2022. "An interval decomposition-ensemble approach with data-characteristic-driven reconstruction for short-term load forecasting," Applied Energy, Elsevier, vol. 306(PA).
    10. Gao, Feng & Shao, Xueyan, 2022. "A novel interval decomposition ensemble model for interval carbon price forecasting," Energy, Elsevier, vol. 243(C).
    11. Tao XIONG & Chongguang LI & Yukun BAO, 2017. "An improved EEMD-based hybrid approach for the short-term forecasting of hog price in China," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 63(3), pages 136-148.
    12. Meira, Erick & Cyrino Oliveira, Fernando Luiz & de Menezes, Lilian M., 2022. "Forecasting natural gas consumption using Bagging and modified regularization techniques," Energy Economics, Elsevier, vol. 106(C).
    13. Lu, Hongfang & Ma, Xin & Huang, Kun & Azimi, Mohammadamin, 2020. "Prediction of offshore wind farm power using a novel two-stage model combining kernel-based nonlinear extension of the Arps decline model with a multi-objective grey wolf optimizer," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    14. Hao, Peng & Guo, Junpeng, 2017. "Constrained center and range joint model for interval-valued symbolic data regression," Computational Statistics & Data Analysis, Elsevier, vol. 116(C), pages 106-138.
    15. Bhatia, Kushagra & Mittal, Rajat & Varanasi, Jyothi & Tripathi, M.M., 2021. "An ensemble approach for electricity price forecasting in markets with renewable energy resources," Utilities Policy, Elsevier, vol. 70(C).
    16. Zhu, Bangzhu & Wan, Chunzhuo & Wang, Ping, 2022. "Interval forecasting of carbon price: A novel multiscale ensemble forecasting approach," Energy Economics, Elsevier, vol. 115(C).
    17. Hasnain Iftikhar & Josue E. Turpo-Chaparro & Paulo Canas Rodrigues & Javier Linkolk López-Gonzales, 2023. "Forecasting Day-Ahead Electricity Prices for the Italian Electricity Market Using a New Decomposition—Combination Technique," Energies, MDPI, vol. 16(18), pages 1-23, September.
    18. Hao, Jun & Feng, Qianqian & Yuan, Jiaxin & Sun, Xiaolei & Li, Jianping, 2022. "A dynamic ensemble learning with multi-objective optimization for oil prices prediction," Resources Policy, Elsevier, vol. 79(C).
    19. Wang, Jujie & Zhuang, Zhenzhen & Gao, Dongming, 2023. "An enhanced hybrid model based on multiple influencing factors and divide-conquer strategy for carbon price prediction," Omega, Elsevier, vol. 120(C).
    20. Zhao, Geya & Xue, Minggao & Cheng, Li, 2023. "A new hybrid model for multi-step WTI futures price forecasting based on self-attention mechanism and spatial–temporal graph neural network," Resources Policy, Elsevier, vol. 85(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:tefoso:v:191:y:2023:i:c:s0040162523001890. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.sciencedirect.com/science/journal/00401625 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.