IDEAS home Printed from https://ideas.repec.org/a/eee/tefoso/v166y2021ics0040162521000809.html
   My bibliography  Save this article

Energy security and RES penetration in a growing decarbonized economy in the era of the 4th industrial revolution

Author

Listed:
  • Bigerna, Simona
  • D’Errico, Maria Chiara
  • Polinori, Paolo

Abstract

The 4th industrial revolution is expected to deeply transform the functioning of the global economy, society, and financial system. It has already triggered several challenges and opportunities for the energy sector. In this context, a secure energy supply is one of the most important factors of international economic activity and technological revolution. This study explores the link between economic growth based on the 4th industrial revolution and energy security. To this end, we use data from the European Union countries for the period 2005–2019. We also use the gross domestic product and energy security indicators as outputs of a ray production function whose inefficiencies can be explained by the share of their fossil and renewable energy. We develop a multiple-output production model using a ray production function with polar coordinates allowing for the estimation of production frontiers and country-specific inefficiency effects. Using the multiple-output production function along with different energy security indicators, we can explore how the energy system endorses economic growth, which is crucial to addressing policy designs from the perspective of the 4th industrial revolution. Forecast analysis confirms that renewable energy sources have positive effects and reduce deviations from the efficient frontier.

Suggested Citation

  • Bigerna, Simona & D’Errico, Maria Chiara & Polinori, Paolo, 2021. "Energy security and RES penetration in a growing decarbonized economy in the era of the 4th industrial revolution," Technological Forecasting and Social Change, Elsevier, vol. 166(C).
  • Handle: RePEc:eee:tefoso:v:166:y:2021:i:c:s0040162521000809
    DOI: 10.1016/j.techfore.2021.120648
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040162521000809
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.techfore.2021.120648?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hanif Malekpoor & Konstantinos Chalvatzis & Nishikant Mishra & Mukesh Kumar Mehlawat & Dimitrios Zafirakis & Malin Song, 2018. "Integrated grey relational analysis and multi objective grey linear programming for sustainable electricity generation planning," Annals of Operations Research, Springer, vol. 269(1), pages 475-503, October.
    2. Peyrache, Antonio & Coelli, Tim, 2009. "Testing procedures for detection of linear dependencies in efficiency models," European Journal of Operational Research, Elsevier, vol. 198(2), pages 647-654, October.
    3. Kruyt, Bert & van Vuuren, D.P. & de Vries, H.J.M. & Groenenberg, H., 2009. "Indicators for energy security," Energy Policy, Elsevier, vol. 37(6), pages 2166-2181, June.
    4. Shahbaz, Muhammad & Nasir, Muhammad Ali & Hille, Erik & Mahalik, Mantu Kumar, 2020. "UK's net-zero carbon emissions target: Investigating the potential role of economic growth, financial development, and R&D expenditures based on historical data (1870–2017)," Technological Forecasting and Social Change, Elsevier, vol. 161(C).
    5. Hung-jen Wang & Peter Schmidt, 2002. "One-Step and Two-Step Estimation of the Effects of Exogenous Variables on Technical Efficiency Levels," Journal of Productivity Analysis, Springer, vol. 18(2), pages 129-144, September.
    6. Meeusen, Wim & van den Broeck, Julien, 1977. "Efficiency Estimation from Cobb-Douglas Production Functions with Composed Error," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 18(2), pages 435-444, June.
    7. Nakano, Makiko & Managi, Shunsuke, 2008. "Regulatory reforms and productivity: An empirical analysis of the Japanese electricity industry," Energy Policy, Elsevier, vol. 36(1), pages 201-209, January.
    8. Kodde, David A & Palm, Franz C, 1986. "Wald Criteria for Jointly Testing Equality and Inequality Restriction s," Econometrica, Econometric Society, vol. 54(5), pages 1243-1248, September.
    9. Vivoda, Vlado, 2010. "Evaluating energy security in the Asia-Pacific region: A novel methodological approach," Energy Policy, Elsevier, vol. 38(9), pages 5258-5263, September.
    10. Heesup Han & Myong Jae Lee & Wansoo Kim, 2018. "Antecedents of Green Loyalty in the Cruise Industry: Sustainable Development and Environmental Management," Business Strategy and the Environment, Wiley Blackwell, vol. 27(3), pages 323-335, March.
    11. Battese, G E & Coelli, T J, 1995. "A Model for Technical Inefficiency Effects in a Stochastic Frontier Production Function for Panel Data," Empirical Economics, Springer, vol. 20(2), pages 325-332.
    12. Kumbhakar, Subal C., 1991. "Estimation of technical inefficiency in panel data models with firm- and time-specific effects," Economics Letters, Elsevier, vol. 36(1), pages 43-48, May.
    13. Iddrisu, Insah & Bhattacharyya, Subhes C., 2015. "Sustainable Energy Development Index: A multi-dimensional indicator for measuring sustainable energy development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 513-530.
    14. Ranjan, Ashish & Hughes, Larry, 2014. "Energy security and the diversity of energy flows in an energy system," Energy, Elsevier, vol. 73(C), pages 137-144.
    15. Jamasb, Tooraj & Pollitt, Michael, 2008. "Security of supply and regulation of energy networks," Energy Policy, Elsevier, vol. 36(12), pages 4584-4589, December.
    16. Bishop, Justin D.K. & Amaratunga, Gehan A.J. & Rodriguez, Cuauhtemoc, 2008. "Using strong sustainability to optimize electricity generation fuel mixes," Energy Policy, Elsevier, vol. 36(3), pages 971-980, March.
    17. Henningsen, Arne & Bělín, Matěj & Henningsen, Géraldine, 2017. "New insights into the stochastic ray production frontier," Economics Letters, Elsevier, vol. 156(C), pages 18-21.
    18. Reifschneider, David & Stevenson, Rodney, 1991. "Systematic Departures from the Frontier: A Framework for the Analysis of Firm Inefficiency," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 32(3), pages 715-723, August.
    19. Jun, Eunju & Kim, Wonjoon & Chang, Soon Heung, 2009. "The analysis of security cost for different energy sources," Applied Energy, Elsevier, vol. 86(10), pages 1894-1901, October.
    20. Cordero, José Manuel & Santín, Daniel & Sicilia, Gabriela, 2015. "Testing the accuracy of DEA estimates under endogeneity through a Monte Carlo simulation," European Journal of Operational Research, Elsevier, vol. 244(2), pages 511-518.
    21. Spanjer, Aldo, 2007. "Russian gas price reform and the EU-Russia gas relationship: Incentives, consequences and European security of supply," Energy Policy, Elsevier, vol. 35(5), pages 2889-2898, May.
    22. Chiu, Yi-Bin, 2017. "Carbon dioxide, income and energy: Evidence from a non-linear model," Energy Economics, Elsevier, vol. 61(C), pages 279-288.
    23. Chalvatzis, Konstantinos J., 2009. "Electricity generation development of Eastern Europe: A carbon technology management case study for Poland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1606-1612, August.
    24. Vivoda, Vlado, 2009. "Diversification of oil import sources and energy security: A key strategy or an elusive objective?," Energy Policy, Elsevier, vol. 37(11), pages 4615-4623, November.
    25. Bifulco, Robert & Bretschneider, Stuart, 2001. "Estimating school efficiency: A comparison of methods using simulated data," Economics of Education Review, Elsevier, vol. 20(5), pages 417-429, October.
    26. He, Peijun & Ng, Tsan Sheng & Su, Bin, 2017. "Energy-economic recovery resilience with Input-Output linear programming models," Energy Economics, Elsevier, vol. 68(C), pages 177-191.
    27. Alam & Paramati, 2015. "Do oil consumption and economic growth intensify environmental degradation? Evidence from developing economies," Applied Economics, Taylor & Francis Journals, vol. 47(48), pages 5186-5203, October.
    28. Caudill, Steven B & Ford, Jon M & Gropper, Daniel M, 1995. "Frontier Estimation and Firm-Specific Inefficiency Measures in the Presence of Heteroscedasticity," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(1), pages 105-111, January.
    29. Hickey, Emily A. & Lon Carlson, J. & Loomis, David, 2010. "Issues in the determination of the optimal portfolio of electricity supply options," Energy Policy, Elsevier, vol. 38(5), pages 2198-2207, May.
    30. Aigner, Dennis & Lovell, C. A. Knox & Schmidt, Peter, 1977. "Formulation and estimation of stochastic frontier production function models," Journal of Econometrics, Elsevier, vol. 6(1), pages 21-37, July.
    31. Ang, B.W. & Choong, W.L. & Ng, T.S., 2015. "Energy security: Definitions, dimensions and indexes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1077-1093.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gianfreda, Angelica & Scandolo, Giacomo, 2023. "A worldwide analysis of the energy regulatory tasks and activities through the lenses of entropy and unsupervised statistical learning," Energy, Elsevier, vol. 271(C).
    2. Maciej Ciołek & Izabela Emerling & Katarzyna Olejko & Beata Sadowska & Magdalena Wójcik-Jurkiewicz, 2022. "Assumptions of the Energy Policy of the Country versus Investment Outlays Related to the Purchase of Alternative Fuels: Poland as a Case Study," Energies, MDPI, vol. 15(5), pages 1-18, March.
    3. Long, Yilu & Tang, Ming & Liao, Huchang, 2022. "Renewable energy source technology selection considering the empathetic preferences of experts in a cognitive fuzzy social participatory allocation network," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
    4. Jin Kuang & Tse-Chen Chang & Chia-Wei Chu, 2022. "Research on Financial Early Warning Based on Combination Forecasting Model," Sustainability, MDPI, vol. 14(19), pages 1-16, September.
    5. Lee, Chien-Chiang & Wang, Chang-song, 2022. "Financial development, technological innovation and energy security: Evidence from Chinese provincial experience," Energy Economics, Elsevier, vol. 112(C).
    6. Wang, Kai-Hua & Zhao, Yan-Xin & Su, Yun Hsuan & Lobonţ, Oana-Ramona, 2023. "Energy security and CO2 emissions: New evidence from time-varying and quantile-varying aspects," Energy, Elsevier, vol. 273(C).
    7. De Rosa, Mattia & Gainsford, Kenneth & Pallonetto, Fabiano & Finn, Donal P., 2022. "Diversification, concentration and renewability of the energy supply in the European Union," Energy, Elsevier, vol. 253(C).
    8. Zhang, Mingming & Zhou, Simei & Wang, Qunwei & Liu, Liyun & Zhou, Dequn, 2023. "Will the carbon neutrality target impact China's energy security? A dynamic Bayesian network model," Energy Economics, Elsevier, vol. 125(C).
    9. Zhang, Tao & Li, Hong-Zhou & Xie, Bai-Chen, 2022. "Have renewables and market-oriented reforms constrained the technical efficiency improvement of China's electric grid utilities?," Energy Economics, Elsevier, vol. 114(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ajayi, V. & Weyman-Jones, T., 2021. "State-Level Electricity Generation Efficiency: Do Restructuring and Regulatory Institutions Matter in the US?," Cambridge Working Papers in Economics 2166, Faculty of Economics, University of Cambridge.
    2. Ajayi, Victor & Weyman-Jones, Tom, 2021. "State-level electricity generation efficiency: Do restructuring and regulatory institutions matter in the US?," Energy Economics, Elsevier, vol. 104(C).
    3. Christopher F. Parmeter & Hung-Jen Wang & Subal C. Kumbhakar, 2017. "Nonparametric estimation of the determinants of inefficiency," Journal of Productivity Analysis, Springer, vol. 47(3), pages 205-221, June.
    4. Ioannidis, Alexis & Chalvatzis, Konstantinos J. & Li, Xin & Notton, Gilles & Stephanides, Phedeas, 2019. "The case for islands’ energy vulnerability: Electricity supply diversity in 44 global islands," Renewable Energy, Elsevier, vol. 143(C), pages 440-452.
    5. Chuang, Ming Chih & Ma, Hwong Wen, 2013. "Energy security and improvements in the function of diversity indices—Taiwan energy supply structure case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 9-20.
    6. Paul, Satya & Shankar, Sriram, 2018. "Modelling Efficiency Effects in a True Fixed Effects Stochastic Frontier," MPRA Paper 87437, University Library of Munich, Germany.
    7. Satya Paul & Sriram Shankar, 2020. "Estimating efficiency effects in a panel data stochastic frontier model," Journal of Productivity Analysis, Springer, vol. 53(2), pages 163-180, April.
    8. Efecan, Volkan & Temiz, İzzettin, 2023. "Assessing the technical efficiency of container ports based on a non-monotonic inefficiency effects model," Utilities Policy, Elsevier, vol. 81(C).
    9. Antti Saastamoinen, 2015. "Heteroscedasticity Or Production Risk? A Synthetic View," Journal of Economic Surveys, Wiley Blackwell, vol. 29(3), pages 459-478, July.
    10. Larson, Donald F. & Plessmann, Frank, 2009. "Do farmers choose to be inefficient? Evidence from Bicol," Journal of Development Economics, Elsevier, vol. 90(1), pages 24-32, September.
    11. Chalvatzis, Konstantinos J. & Ioannidis, Alexis, 2017. "Energy supply security in the EU: Benchmarking diversity and dependence of primary energy," Applied Energy, Elsevier, vol. 207(C), pages 465-476.
    12. Martin Falk, 2009. "Are multi-resort ski conglomerates more efficient?," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 30(8), pages 529-538.
    13. Ang, B.W. & Choong, W.L. & Ng, T.S., 2015. "Energy security: Definitions, dimensions and indexes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1077-1093.
    14. Jamasb, Tooraj & Llorca, Manuel & Khetrapal, Pavan & Thakur, Tripta, 2021. "Institutions and performance of regulated firms: Evidence from electricity distribution in India," Economic Analysis and Policy, Elsevier, vol. 70(C), pages 68-82.
    15. Dipanwita Sarkar & Trevor C. Collier, 2019. "Does host-country education mitigate immigrant inefficiency? Evidence from earnings of Australian university graduates," Empirical Economics, Springer, vol. 56(1), pages 81-106, January.
    16. Arazmuradov, Annageldy & Martini, Gianmaria & Scotti, Davide, 2014. "Determinants of total factor productivity in former Soviet Union economies: A stochastic frontier approach," Economic Systems, Elsevier, vol. 38(1), pages 115-135.
    17. Fenn, Paul & Vencappa, Dev & Diacon, Stephen & Klumpes, Paul & O'Brien, Chris, 2008. "Market structure and the efficiency of European insurance companies: A stochastic frontier analysis," Journal of Banking & Finance, Elsevier, vol. 32(1), pages 86-100, January.
    18. Dakpogan, Arnaud & Smit, Eon, 2018. "Measuring electricity security risk," MPRA Paper 89295, University Library of Munich, Germany.
    19. Andriakopoulos, Konstantinos & Ladas, Augoustinos & Andriakopoulos, Panagiotis, 2020. "Bank efficiency and leasing in U.S.A. banking system," MPRA Paper 112645, University Library of Munich, Germany.
    20. Roy, Manish & Mazumder, Ritwik, 2016. "Technical Efficiency of Fish Catch in Traditional Fishing: A Study in Southern Assam," Journal of Regional Development and Planning, Rajarshi Majumder, vol. 5(1), pages 55-68.

    More about this item

    Keywords

    4th Industrial Revolution; Energy Security; Renewable Energy Sources; Economic Growth; Panel Models;
    All these keywords.

    JEL classification:

    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models
    • O1 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development
    • Q42 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Alternative Energy Sources
    • Q49 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Other

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:tefoso:v:166:y:2021:i:c:s0040162521000809. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.sciencedirect.com/science/journal/00401625 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.