IDEAS home Printed from https://ideas.repec.org/a/eee/soceps/v60y2017icp24-33.html
   My bibliography  Save this article

Efficiency evaluation of the regional high-tech industry in China: A new framework based on meta-frontier dynamic DEA analysis

Author

Listed:
  • Li, Lan-bing
  • Liu, Bing-lian
  • Liu, Wei-lin
  • Chiu, Yung-Ho

Abstract

This paper proposes a new framework based on the combination of the dynamic DEA, meta-frontier analysis theory, and truncated regression model, and then focuses on the efficiency evaluation of regional high-tech industries in China. For all of the overall technical efficiency, technical efficiency, and scale efficiency scores, the east area is always in the lead, with the central and west areas obviously lagging behind. The eastern area has the highest technology level, whereas the west and central areas fall behind in turn. However, the meta-technology ratio of the west area has rapidly increased and presents a trend of catching up with the east. The variables of GRP per capital, total exports and imports, highway mileage per capita, and ratio of tertiary industry to GRP have positive relationships with technical efficiency, and the time trend exhibits a negative coefficient.

Suggested Citation

  • Li, Lan-bing & Liu, Bing-lian & Liu, Wei-lin & Chiu, Yung-Ho, 2017. "Efficiency evaluation of the regional high-tech industry in China: A new framework based on meta-frontier dynamic DEA analysis," Socio-Economic Planning Sciences, Elsevier, vol. 60(C), pages 24-33.
  • Handle: RePEc:eee:soceps:v:60:y:2017:i:c:p:24-33
    DOI: 10.1016/j.seps.2017.02.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0038012116301689
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.seps.2017.02.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chang, Tzu-Pu & Hu, Jin-Li, 2010. "Total-factor energy productivity growth, technical progress, and efficiency change: An empirical study of China," Applied Energy, Elsevier, vol. 87(10), pages 3262-3270, October.
    2. Kao, Chiang, 2013. "Dynamic data envelopment analysis: A relational analysis," European Journal of Operational Research, Elsevier, vol. 227(2), pages 325-330.
    3. Sueyoshi, Toshiyuki & Sekitani, Kazuyuki, 2005. "Returns to scale in dynamic DEA," European Journal of Operational Research, Elsevier, vol. 161(2), pages 536-544, March.
    4. Tseng, Fang-Mei & Chiu, Yu-Jing & Chen, Ja-Shen, 2009. "Measuring business performance in the high-tech manufacturing industry: A case study of Taiwan's large-sized TFT-LCD panel companies," Omega, Elsevier, vol. 37(3), pages 686-697, June.
    5. Chen, Chien-Ming & van Dalen, Jan, 2010. "Measuring dynamic efficiency: Theories and an integrated methodology," European Journal of Operational Research, Elsevier, vol. 203(3), pages 749-760, June.
    6. Yujiro Hayami, 1969. "Sources of Agricultural Productivity Gap Among Selected Countries," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 51(3), pages 564-575.
    7. Hayami, Yujiro & Ruttan, Vernon W, 1970. "Agricultural Productivity Differences Among Countries," American Economic Review, American Economic Association, vol. 60(5), pages 895-911, December.
    8. Kaoru Tone & Miki Tsutsui, 2014. "Slacks-Based Network DEA," International Series in Operations Research & Management Science, in: Wade D. Cook & Joe Zhu (ed.), Data Envelopment Analysis, edition 127, chapter 0, pages 231-259, Springer.
    9. Tone, Kaoru & Tsutsui, Miki, 2010. "Dynamic DEA: A slacks-based measure approach," Omega, Elsevier, vol. 38(3-4), pages 145-156, June.
    10. Nemoto, Jiro & Goto, Mika, 1999. "Dynamic data envelopment analysis: modeling intertemporal behavior of a firm in the presence of productive inefficiencies," Economics Letters, Elsevier, vol. 64(1), pages 51-56, July.
    11. Christopher O’Donnell & D. Rao & George Battese, 2008. "Metafrontier frameworks for the study of firm-level efficiencies and technology ratios," Empirical Economics, Springer, vol. 34(2), pages 231-255, March.
    12. George Battese & D. Rao & Christopher O'Donnell, 2004. "A Metafrontier Production Function for Estimation of Technical Efficiencies and Technology Gaps for Firms Operating Under Different Technologies," Journal of Productivity Analysis, Springer, vol. 21(1), pages 91-103, January.
    13. George E. Battese & D. S. Prasada Rao, 2002. "Technology Gap, Efficiency, and a Stochastic Metafrontier Function," International Journal of Business and Economics, School of Management Development, Feng Chia University, Taichung, Taiwan, vol. 1(2), pages 87-93, August.
    14. Hu, Jin-Li & Wang, Shih-Chuan, 2006. "Total-factor energy efficiency of regions in China," Energy Policy, Elsevier, vol. 34(17), pages 3206-3217, November.
    15. Sengupta, Jati K., 1994. "Measuring dynamic efficiency under risk aversion," European Journal of Operational Research, Elsevier, vol. 74(1), pages 61-69, April.
    16. Chang, Tzu-Pu & Hu, Jin-Li & Chou, Ray Yeutien & Sun, Lei, 2012. "The sources of bank productivity growth in China during 2002–2009: A disaggregation view," Journal of Banking & Finance, Elsevier, vol. 36(7), pages 1997-2006.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yongqi Feng & Haolin Zhang & Yung-ho Chiu & Tzu-Han Chang, 2021. "Innovation efficiency and the impact of the institutional quality: a cross-country analysis using the two-stage meta-frontier dynamic network DEA model," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(4), pages 3091-3129, April.
    2. Fang-Rong Ren & Ze Tian & Yu-Ting Shen & Yung-Ho Chiu & Tai-Yu Lin, 2019. "Energy, CO 2 , and AQI Efficiency and Improvement of the Yangtze River Economic Belt," Energies, MDPI, vol. 12(4), pages 1-17, February.
    3. Nelson Amowine & Zhiqiang Ma & Mingxing Li & Zhixiang Zhou & Benjamin Azembila Asunka & James Amowine, 2019. "Energy Efficiency Improvement Assessment in Africa: An Integrated Dynamic DEA Approach," Energies, MDPI, vol. 12(20), pages 1-17, October.
    4. Guo, Xiaoying & Lu, Ching-Cheng & Lee, Jen-Hui & Chiu, Yung-Ho, 2017. "Applying the dynamic DEA model to evaluate the energy efficiency of OECD countries and China," Energy, Elsevier, vol. 134(C), pages 392-399.
    5. Yu, Ming-Miin & Lin, Chung-I & Chen, Kuan-Chen & Chen, Li-Hsueh, 2021. "Measuring Taiwanese bank performance: A two-system dynamic network data envelopment analysis approach," Omega, Elsevier, vol. 98(C).
    6. Ching-Cheng Lu & Liang-Chun Lu, 2019. "Evaluating the energy efficiency of European Union countries: The dynamic data envelopment analysis," Energy & Environment, , vol. 30(1), pages 27-43, February.
    7. Dan Wu & Ching-Cheng Lu & Xiang Chen & Pei-Chieh Tu & An-Chi Yang & Chih-Yu Yang, 2021. "Evaluating the Dynamic Energy Production Efficiency in APEC Economies," Energies, MDPI, vol. 14(14), pages 1-20, July.
    8. Hsiao-Yin Chen & Chin-wei Huang & Yung-Ho Chiu, 2017. "An intertemporal efficiency and technology measurement for tourist hotel," Journal of Productivity Analysis, Springer, vol. 48(1), pages 85-96, August.
    9. Kao, Chiang, 2014. "Network data envelopment analysis: A review," European Journal of Operational Research, Elsevier, vol. 239(1), pages 1-16.
    10. Xiangyu Teng & Danting Lu & Yung-ho Chiu, 2019. "Emission Reduction and Energy Performance Improvement with Different Regional Treatment Intensity in China," Energies, MDPI, vol. 12(2), pages 1-18, January.
    11. Hang, Ye & Sun, Jiasen & Wang, Qunwei & Zhao, Zengyao & Wang, Yizhong, 2015. "Measuring energy inefficiency with undesirable outputs and technology heterogeneity in Chinese cities," Economic Modelling, Elsevier, vol. 49(C), pages 46-52.
    12. Afsharian, Mohsen & Ahn, Heinz & Harms, Sören Guntram, 2019. "Performance comparison of management groups under centralised management," European Journal of Operational Research, Elsevier, vol. 278(3), pages 845-854.
    13. Thanh Pham Thien Nguyen & Son Hong Nghiem & Eduardo Roca & Parmendra Sharma, 2016. "Efficiency, innovation and competition: evidence from Vietnam, China and India," Empirical Economics, Springer, vol. 51(3), pages 1235-1259, November.
    14. Aparicio, Juan & Kapelko, Magdalena, 2019. "Accounting for slacks to measure dynamic inefficiency in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 278(2), pages 463-471.
    15. He, Yan & Chiu, Yung-ho & Zhang, Bin, 2015. "The impact of corporate governance on state-owned and non-state-owned firms efficiency in China," The North American Journal of Economics and Finance, Elsevier, vol. 33(C), pages 252-277.
    16. Hong-Oanh Nguyen & Hong-Son Nghiem & Young-Tae Chang, 2018. "A regional perspective of port performance using metafrontier analysis: the case study of Vietnamese ports," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 20(1), pages 112-130, March.
    17. Tanko, Mohammed & Ismaila, Salifu, 2021. "How culture and religion influence the agriculture technology gap in Northern Ghana," World Development Perspectives, Elsevier, vol. 22(C).
    18. Antonio Peyrache & Maria C. A. Silva, 2019. "The Inefficiency of Production Systems and its decomposition," CEPA Working Papers Series WP052019, School of Economics, University of Queensland, Australia.
    19. Chiu, Yung-Ho & Lee, Jen-Hui & Lu, Ching-Cheng & Shyu, Ming-Kuang & Luo, Zhengying, 2012. "The technology gap and efficiency measure in WEC countries: Application of the hybrid meta frontier model," Energy Policy, Elsevier, vol. 51(C), pages 349-357.
    20. Wang, Miao & Feng, Chao, 2023. "Measuring capacity utilization under the constraints of energy consumption and CO2 emissions using meta-frontier DEA: A case of China's non-ferrous metal industries," Resources Policy, Elsevier, vol. 80(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:soceps:v:60:y:2017:i:c:p:24-33. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/seps .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.