IDEAS home Printed from https://ideas.repec.org/a/eee/respol/v50y2021i2s0048733320302201.html
   My bibliography  Save this article

Hand in hand to Nowhereland? How the resource dependence of research institutes influences their co-evolution with industry

Author

Listed:
  • Hoppmann, Joern

Abstract

The linkages between science and industry have long been of interest to scholars studying technological change. Recent studies demonstrate that resource exchange between science and industry may lead to patterns of co-evolution, with major implications for the rate and direction of innovation. However, we currently know very little about how the dynamics of co-evolution between research institutes and industry are influenced by organizational characteristics. To address this shortcoming, in this paper we draw on a comparative case study of the world's two largest research institutes for solar photovoltaic power and study how differences in their financial resource dependence influence patterns of co-evolution. We demonstrate that when a research institute is heavily reliant on industry funding, it leads to close co-evolution of science and industry, thereby raising the risk of a mutual lock-in into specific technologies. A heavy reliance on public funding, on the other hand, contributes to the decoupling of science and industry evolution, which entails the risk of research having limited impact on practice. By developing a framework that shows how co-evolution between science and industry is affected by resource dependence, our study contributes to the literature on science-industry collaboration, co-evolution, and technological paradigms. Moreover, our study bears important implications for policy makers and managers of research institutes interested in spurring technological change.

Suggested Citation

  • Hoppmann, Joern, 2021. "Hand in hand to Nowhereland? How the resource dependence of research institutes influences their co-evolution with industry," Research Policy, Elsevier, vol. 50(2).
  • Handle: RePEc:eee:respol:v:50:y:2021:i:2:s0048733320302201
    DOI: 10.1016/j.respol.2020.104145
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0048733320302201
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.respol.2020.104145?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hendry, Chris & Harborne, Paul, 2011. "Changing the view of wind power development: More than "bricolage"," Research Policy, Elsevier, vol. 40(5), pages 778-789, June.
    2. Dirk Czarnitzki & Katrin Hussinger & Cédric Schneider, 2012. "The nexus between science and industry: evidence from faculty inventions," The Journal of Technology Transfer, Springer, vol. 37(5), pages 755-776, October.
    3. Johann Peter Murmann, 2013. "The Coevolution of Industries and Important Features of Their Environments," Organization Science, INFORMS, vol. 24(1), pages 58-78, February.
    4. Bronwyn H. HALL, 2004. "University-Industry Research Partnerships in the United States," Economics Working Papers ECO2004/14, European University Institute.
    5. Raghu Garud & Michael A. Rappa, 1994. "A Socio-Cognitive Model of Technology Evolution: The Case of Cochlear Implants," Organization Science, INFORMS, vol. 5(3), pages 344-362, August.
    6. Salter, Ammon J. & Martin, Ben R., 2001. "The economic benefits of publicly funded basic research: a critical review," Research Policy, Elsevier, vol. 30(3), pages 509-532, March.
    7. Arie Y. Lewin & Henk W. Volberda, 1999. "Prolegomena on Coevolution: A Framework for Research on Strategy and New Organizational Forms," Organization Science, INFORMS, vol. 10(5), pages 519-534, October.
    8. Murray, Fiona, 2002. "Innovation as co-evolution of scientific and technological networks: exploring tissue engineering," Research Policy, Elsevier, vol. 31(8-9), pages 1389-1403, December.
    9. Bruneel, Johan & D'Este, Pablo & Salter, Ammon, 2010. "Investigating the factors that diminish the barriers to university-industry collaboration," Research Policy, Elsevier, vol. 39(7), pages 858-868, September.
    10. Arthur, W Brian, 1989. "Competing Technologies, Increasing Returns, and Lock-In by Historical Events," Economic Journal, Royal Economic Society, vol. 99(394), pages 116-131, March.
    11. Petersen, Alexander M. & Rotolo, Daniele & Leydesdorff, Loet, 2016. "A triple helix model of medical innovation: Supply, demand, and technological capabilities in terms of Medical Subject Headings," Research Policy, Elsevier, vol. 45(3), pages 666-681.
    12. D. Schartinger & C. Rammer & J. Fröhlich, 2006. "Knowledge Interactions between Universities and Industry in Austria: Sectoral Patterns and Determinants," Springer Books, in: Innovation, Networks, and Knowledge Spillovers, chapter 7, pages 135-166, Springer.
    13. Garud, Raghu & Karnoe, Peter, 2003. "Bricolage versus breakthrough: distributed and embedded agency in technology entrepreneurship," Research Policy, Elsevier, vol. 32(2), pages 277-300, February.
    14. Unruh, Gregory C., 2000. "Understanding carbon lock-in," Energy Policy, Elsevier, vol. 28(12), pages 817-830, October.
    15. Wesley M. Cohen & Richard R. Nelson & John P. Walsh, 2003. "Links and Impacts: The Influence of Public Research on Industrial R&D," Chapters, in: Aldo Geuna & Ammon J. Salter & W. Edward Steinmueller (ed.), Science and Innovation, chapter 4, Edward Elgar Publishing.
    16. Anadón, Laura Díaz, 2012. "Missions-oriented RD&D institutions in energy between 2000 and 2010: A comparative analysis of China, the United Kingdom, and the United States," Research Policy, Elsevier, vol. 41(10), pages 1742-1756.
    17. D'Este, P. & Patel, P., 2007. "University-industry linkages in the UK: What are the factors underlying the variety of interactions with industry?," Research Policy, Elsevier, vol. 36(9), pages 1295-1313, November.
    18. Meyer-Krahmer, Frieder & Schmoch, Ulrich, 1998. "Science-based technologies: university-industry interactions in four fields," Research Policy, Elsevier, vol. 27(8), pages 835-851, December.
    19. Phillip Phan & Donald S. Siegel & Mike Wright, 2016. "Science Parks and Incubators: Observations, Synthesis and Future Research," World Scientific Book Chapters, in: Phillip H Phan & Sarfraz A Mian & Wadid Lamine (ed.), TECHNOLOGY ENTREPRENEURSHIP AND BUSINESS INCUBATION Theory • Practice • Lessons Learned, chapter 9, pages 249-272, World Scientific Publishing Co. Pte. Ltd..
    20. Dosi, Giovanni, 1993. "Technological paradigms and technological trajectories : A suggested interpretation of the determinants and directions of technical change," Research Policy, Elsevier, vol. 22(2), pages 102-103, April.
    21. Brian Boyd, 1990. "Corporate linkages and organizational environment: A test of the resource dependence model," Strategic Management Journal, Wiley Blackwell, vol. 11(6), pages 419-430, October.
    22. Franco Malerba, 2009. "Increase Learning, Break Knowledge Lock-ins and Foster Dynamic Complementarities: Evolutionary and System Perspectives on Technology Policy in Industrial Dynamics," Chapters, in: Dominique Foray (ed.), The New Economics of Technology Policy, chapter 4, Edward Elgar Publishing.
    23. Lee, Yong S., 1996. "'Technology transfer' and the research university: a search for the boundaries of university-industry collaboration," Research Policy, Elsevier, vol. 25(6), pages 843-863, September.
    24. Mowery, David C. & Nelson, Richard R. & Martin, Ben R., 2010. "Technology policy and global warming: Why new policy models are needed (or why putting new wine in old bottles won't work)," Research Policy, Elsevier, vol. 39(8), pages 1011-1023, October.
    25. Blankenberg, Ann-Kathrin & Buenstorf, Guido, 2016. "Regional co-evolution of firm population, innovation and public research? Evidence from the West German laser industry," Research Policy, Elsevier, vol. 45(4), pages 857-868.
    26. William Bonvillian & Richard Atta, 2011. "ARPA-E and DARPA: Applying the DARPA model to energy innovation," The Journal of Technology Transfer, Springer, vol. 36(5), pages 469-513, October.
    27. Narin, Francis & Hamilton, Kimberly S. & Olivastro, Dominic, 1997. "The increasing linkage between U.S. technology and public science," Research Policy, Elsevier, vol. 26(3), pages 317-330, October.
    28. Kaufmann, Alexander & Todtling, Franz, 2001. "Science-industry interaction in the process of innovation: the importance of boundary-crossing between systems," Research Policy, Elsevier, vol. 30(5), pages 791-804, May.
    29. Carayol, Nicolas, 2003. "Objectives, agreements and matching in science-industry collaborations: reassembling the pieces of the puzzle," Research Policy, Elsevier, vol. 32(6), pages 887-908, June.
    30. Ben R. Martin, 2012. "Are universities and university research under threat? Towards an evolutionary model of university speciation," Cambridge Journal of Economics, Oxford University Press, vol. 36(3), pages 543-565.
    31. Hoppmann, Joern & Anadon, Laura Diaz & Narayanamurti, Venkatesh, 2020. "Why matter matters: How technology characteristics shape the strategic framing of technologies," Research Policy, Elsevier, vol. 49(1).
    32. Hoppmann, Joern & Peters, Michael & Schneider, Malte & Hoffmann, Volker H., 2013. "The two faces of market support—How deployment policies affect technological exploration and exploitation in the solar photovoltaic industry," Research Policy, Elsevier, vol. 42(4), pages 989-1003.
    33. Goldstein, Anna P. & Narayanamurti, Venkatesh, 2018. "Simultaneous pursuit of discovery and invention in the US Department of Energy," Research Policy, Elsevier, vol. 47(8), pages 1505-1512.
    34. Laura Diaz Anadon & Gabriel Chan & Amitai Y. Bin-Nun & Venkatesh Narayanamurti, 2016. "The pressing energy innovation challenge of the US National Laboratories," Nature Energy, Nature, vol. 1(10), pages 1-8, October.
    35. Bozeman, Barry & Rimes, Heather & Youtie, Jan, 2015. "The evolving state-of-the-art in technology transfer research: Revisiting the contingent effectiveness model," Research Policy, Elsevier, vol. 44(1), pages 34-49.
    36. Jeannette Colyvas & Michael Crow & Annetine Gelijns & Roberto Mazzoleni & Richard R. Nelson & Nathan Rosenberg & Bhaven N. Sampat, 2002. "How Do University Inventions Get Into Practice?," Management Science, INFORMS, vol. 48(1), pages 61-72, January.
    37. Doblinger, Claudia & Surana, Kavita & Anadon, Laura Diaz, 2019. "Governments as partners: The role of alliances in U.S. cleantech startup innovation," Research Policy, Elsevier, vol. 48(6), pages 1458-1475.
    38. Rosenberg, Nathan & Nelson, Richard R., 1994. "American universities and technical advance in industry," Research Policy, Elsevier, vol. 23(3), pages 323-348, May.
    39. Perkmann, Markus & Tartari, Valentina & McKelvey, Maureen & Autio, Erkko & Broström, Anders & D’Este, Pablo & Fini, Riccardo & Geuna, Aldo & Grimaldi, Rosa & Hughes, Alan & Krabel, Stefan & Kitson, Mi, 2013. "Academic engagement and commercialisation: A review of the literature on university–industry relations," Research Policy, Elsevier, vol. 42(2), pages 423-442.
    40. Michael Gibbert & Winfried Ruigrok & Barbara Wicki, 2008. "What passes as a rigorous case study?," Strategic Management Journal, Wiley Blackwell, vol. 29(13), pages 1465-1474, December.
    41. Bagnall, Darren M. & Boreland, Matt, 2008. "Photovoltaic technologies," Energy Policy, Elsevier, vol. 36(12), pages 4390-4396, December.
    42. Nemet, Gregory F., 2009. "Demand-pull, technology-push, and government-led incentives for non-incremental technical change," Research Policy, Elsevier, vol. 38(5), pages 700-709, June.
    43. Gabriel Chan & Anna P. Goldstein & Amitai Bin-Nun & Laura Diaz Anadon & Venkatesh Narayanamurti, 2017. "Six principles for energy innovation," Nature, Nature, vol. 552(7683), pages 25-27, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gennaro Strazzullo & William J. Ion & Jillian MacBryde, 2022. "An Investigation of the Translational Asset: A Proposed Classification," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 13(4), pages 3123-3149, December.
    2. Hong Liu & Zhihua Liu & Yongzeng Lai & Lin Li, 2021. "Factors Influencing Collaborative Innovation Project Performance: The Case of China," Sustainability, MDPI, vol. 13(13), pages 1-19, July.
    3. Eleni N. Arvaniti & Agapi Dima & Chrysostomos D. Stylios & Vagelis G. Papadakis, 2022. "Introducing Research Loop to Achieve Open Innovation for Research Centers in Quintuple Helix," Sustainability, MDPI, vol. 14(22), pages 1-15, November.
    4. Eleni N. Arvaniti & Agapi Dima & Chrysostomos D. Stylios & Vagelis G. Papadakis, 2022. "A New Step-by-Step Model for Implementing Open Innovation," Sustainability, MDPI, vol. 14(10), pages 1-17, May.
    5. Kejing Chen & Qiaoshuang Meng & Yutao Sun & Qingqing Wan, 2024. "How does industrial policy experimentation influence innovation performance? A case of Made in China 2025," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-17, December.
    6. Nuñez-Jimenez, Alejandro & Knoeri, Christof & Hoppmann, Joern & Hoffmann, Volker H., 2022. "Beyond innovation and deployment: Modeling the impact of technology-push and demand-pull policies in Germany's solar policy mix," Research Policy, Elsevier, vol. 51(10).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Victoria Galan-Muros & Todd Davey, 2019. "The UBC ecosystem: putting together a comprehensive framework for university-business cooperation," The Journal of Technology Transfer, Springer, vol. 44(4), pages 1311-1346, August.
    2. Hoppmann, Joern & Peters, Michael & Schneider, Malte & Hoffmann, Volker H., 2013. "The two faces of market support—How deployment policies affect technological exploration and exploitation in the solar photovoltaic industry," Research Policy, Elsevier, vol. 42(4), pages 989-1003.
    3. De Fuentes, Claudia & Dutrénit, Gabriela, 2012. "Best channels of academia–industry interaction for long-term benefit," Research Policy, Elsevier, vol. 41(9), pages 1666-1682.
    4. Doblinger, Claudia & Surana, Kavita & Anadon, Laura Diaz, 2019. "Governments as partners: The role of alliances in U.S. cleantech startup innovation," Research Policy, Elsevier, vol. 48(6), pages 1458-1475.
    5. Aurora A. C. Teixeira & Luisa Mota, 2012. "A bibliometric portrait of the evolution, scientific roots and influence of the literature on university–industry links," Scientometrics, Springer;Akadémiai Kiadó, vol. 93(3), pages 719-743, December.
    6. Uwe Cantner & Martin Kalthaus & Indira Yarullina, 2022. "Outcomes of Science-Industry Collaboration: Factors and Interdependencies," Jena Economics Research Papers 2022-003, Friedrich-Schiller-University Jena.
    7. Banal-Estañol, Albert & Jofre-Bonet, Mireia & Lawson, Cornelia, 2015. "The double-edged sword of industry collaboration: Evidence from engineering academics in the UK," Research Policy, Elsevier, vol. 44(6), pages 1160-1175.
    8. Yuandi Wang & Die Hu & Weiping Li & Yiwei Li & Qiang Li, 2015. "Collaboration strategies and effects on university research: evidence from Chinese universities," Scientometrics, Springer;Akadémiai Kiadó, vol. 103(2), pages 725-749, May.
    9. Alessandra Scandura & Simona Iammarino, 2022. "Academic engagement with industry: the role of research quality and experience," The Journal of Technology Transfer, Springer, vol. 47(4), pages 1000-1036, August.
    10. Ardito, Lorenzo & Petruzzelli, Antonio Messeni & Ghisetti, Claudia, 2019. "The impact of public research on the technological development of industry in the green energy field," Technological Forecasting and Social Change, Elsevier, vol. 144(C), pages 25-35.
    11. Adele Parmentola & Marco Ferretti & Eva Panetti, 0. "Exploring the university-industry cooperation in a low innovative region. What differences between low tech and high tech industries?," International Entrepreneurship and Management Journal, Springer, vol. 0, pages 1-28.
    12. He, Vivianna Fang & von Krogh, Georg & Sirén, Charlotta & Gersdorf, Thomas, 2021. "Asymmetries between partners and the success of university-industry research collaborations," Research Policy, Elsevier, vol. 50(10).
    13. Isabel Maria Bodas Freitas & Aldo Geuna & Federica Rossi, 2011. "University–Industry Interactions: The Unresolved Puzzle," Chapters, in: Cristiano Antonelli (ed.), Handbook on the Economic Complexity of Technological Change, chapter 11, Edward Elgar Publishing.
    14. Adele Parmentola & Marco Ferretti & Eva Panetti, 2021. "Exploring the university-industry cooperation in a low innovative region. What differences between low tech and high tech industries?," International Entrepreneurship and Management Journal, Springer, vol. 17(3), pages 1469-1496, September.
    15. Ankrah, Samuel & AL-Tabbaa, Omar, 2015. "Universities–industry collaboration: A systematic review," Scandinavian Journal of Management, Elsevier, vol. 31(3), pages 387-408.
    16. Bianchini, Stefano & Llerena, Patrick & Patsali, Sofia, 2019. "Demand-pull innovation in science: Empirical evidence from a research university’s suppliers," Research Policy, Elsevier, vol. 48(S).
    17. Larsen, Maria Theresa, 2011. "The implications of academic enterprise for public science: An overview of the empirical evidence," Research Policy, Elsevier, vol. 40(1), pages 6-19, February.
    18. Sánchez-Barrioluengo, Mabel, 2014. "Articulating the ‘three-missions’ in Spanish universities," Research Policy, Elsevier, vol. 43(10), pages 1760-1773.
    19. Christian Sandström & Karl Wennberg & Martin W. Wallin & Yulia Zherlygina, 2018. "Public policy for academic entrepreneurship initiatives: a review and critical discussion," The Journal of Technology Transfer, Springer, vol. 43(5), pages 1232-1256, October.
    20. Fernández-Esquinas, Manuel & Pinto, Hugo & Yruela, Manuel Pérez & Pereira, Tiago Santos, 2016. "Tracing the flows of knowledge transfer: Latent dimensions and determinants of university–industry interactions in peripheral innovation systems," Technological Forecasting and Social Change, Elsevier, vol. 113(PB), pages 266-279.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:respol:v:50:y:2021:i:2:s0048733320302201. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/respol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.