IDEAS home Printed from https://ideas.repec.org/a/eee/resene/v68y2022ics0928765522000124.html
   My bibliography  Save this article

Estimating welfare impacts of climate change using a discrete-choice model of land management: An application to western U.S. forestry

Author

Listed:
  • Hashida, Yukiko
  • Lewis, David J.

Abstract

This study develops a method to estimate the welfare impacts of climate change on landowners using a discrete-choice econometric model of land management. We apply the method to forest management in the Pacific states of the U.S. and estimate welfare effects on the region that holds the largest current commercial value – western Oregon and Washington. We find evidence that a warmer and drier climate will induce an approximate 39 % loss in the economic value of timberland by 2050, though there is heterogeneity across space. The discrete-choice approach allows us to determine that the welfare losses are primarily driven by estimated losses to Douglas-fir, the most commercially valuable species. An alternative approach to welfare analysis from climate change is the Ricardian method, which gives conceptually similar estimates to the discrete-choice method. While we find similar empirical findings between the discrete-choice and Ricardian approaches, the discrete-choice approach provides more heterogeneity and somewhat larger negative welfare impacts. Our analysis is notable for providing the first empirical evidence that climate change can induce welfare losses to timberland owners, even while accounting for optimal adaptation.

Suggested Citation

  • Hashida, Yukiko & Lewis, David J., 2022. "Estimating welfare impacts of climate change using a discrete-choice model of land management: An application to western U.S. forestry," Resource and Energy Economics, Elsevier, vol. 68(C).
  • Handle: RePEc:eee:resene:v:68:y:2022:i:c:s0928765522000124
    DOI: 10.1016/j.reseneeco.2022.101295
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0928765522000124
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.reseneeco.2022.101295?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Steven J. Dundas & Roger H. von Haefen, 2020. "The Effects of Weather on Recreational Fishing Demand and Adaptation: Implications for a Changing Climate," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 7(2), pages 209-242.
    2. Dug Man Lee & Kenneth S. Lyon, 2004. "A Dynamic Analysis of the Global Timber Market under Global Warming: An Integrated Modeling Approach," Southern Economic Journal, John Wiley & Sons, vol. 70(3), pages 467-489, January.
    3. Small, Kenneth A & Rosen, Harvey S, 1981. "Applied Welfare Economics with Discrete Choice Models," Econometrica, Econometric Society, vol. 49(1), pages 105-130, January.
    4. Ruben N. Lubowski & Andrew J. Plantinga & Robert N. Stavins, 2008. "What Drives Land-Use Change in the United States? A National Analysis of Landowner Decisions," Land Economics, University of Wisconsin Press, vol. 84(4), pages 529-550.
    5. Todd Sanford & Peter C. Frumhoff & Amy Luers & Jay Gulledge, 2014. "The climate policy narrative for a dangerously warming world," Nature Climate Change, Nature, vol. 4(3), pages 164-166, March.
    6. Wolfram Schlenker & W. Michael Hanemann & Anthony C. Fisher, 2006. "The Impact of Global Warming on U.S. Agriculture: An Econometric Analysis of Optimal Growing Conditions," The Review of Economics and Statistics, MIT Press, vol. 88(1), pages 113-125, February.
    7. Carlo Fezzi & Ian Bateman, 2015. "The Impact of Climate Change on Agriculture: Nonlinear Effects and Aggregation Bias in Ricardian Models of Farmland Values," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 2(1), pages 57-92.
    8. M. Brunette & M. Hanewinkel & R. Yousefpour, 2020. "Risk aversion hinders forestry professionals to adapt to climate change," Climatic Change, Springer, vol. 162(4), pages 2157-2180, October.
    9. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521747387.
    10. Christopher Mihiar & David J. Lewis, 2021. "Climate, Adaptation, and the Value of Forestland: A National Ricardian Analysis of the United States," Land Economics, University of Wisconsin Press, vol. 97(4), pages 911-932.
    11. Guo, Christopher & Costello, Christopher, 2013. "The value of adaption: Climate change and timberland management," Journal of Environmental Economics and Management, Elsevier, vol. 65(3), pages 452-468.
    12. Ariel Ortiz‐Bobea, 2020. "The Role of Nonfarm Influences in Ricardian Estimates of Climate Change Impacts on US Agriculture," American Journal of Agricultural Economics, John Wiley & Sons, vol. 102(3), pages 934-959, May.
    13. Severen, Christopher & Costello, Christopher & Deschênes, Olivier, 2018. "A Forward-Looking Ricardian Approach: Do land markets capitalize climate change forecasts?," Journal of Environmental Economics and Management, Elsevier, vol. 89(C), pages 235-254.
    14. Emanuele Massetti & Robert Mendelsohn, 2018. "Measuring Climate Adaptation: Methods and Evidence," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 12(2), pages 324-341.
    15. Hashida, Yukiko & Withey, John & Lewis, David & Newman, Tara & Kline, Jeffrey, 2020. "Anticipating changes in wildlife habitat induced by private forest owners’ adaptation to climate change and carbon policy," MPRA Paper 99695, University Library of Munich, Germany.
    16. Yukiko Hashida & David J. Lewis, 2019. "The Intersection between Climate Adaptation, Mitigation, and Natural Resources: An Empirical Analysis of Forest Management," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 6(5), pages 893-926.
    17. Sohngen, Brent & Mendelsohn, Robert, 1998. "Valuing the Impact of Large-Scale Ecological Change in a Market: The Effect of Climate Change on U.S. Timber," American Economic Review, American Economic Association, vol. 88(4), pages 686-710, September.
    18. Robert O. Mendelsohn & Emanuele Massetti, 2017. "The Use of Cross-Sectional Analysis to Measure Climate Impacts on Agriculture: Theory and Evidence," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 11(2), pages 280-298.
    19. Krinsky, Itzhak & Robb, A Leslie, 1986. "On Approximating the Statistical Properties of Elasticities," The Review of Economics and Statistics, MIT Press, vol. 68(4), pages 715-719, November.
    20. Gregory S. Amacher & Arun S. Malik & Robert G. Haight, 2005. "Not Getting Burned: The Importance of Fire Prevention in Forest Management," Land Economics, University of Wisconsin Press, vol. 81(2).
    21. Brent Sohngen, 2020. "Climate Change and Forests," Annual Review of Resource Economics, Annual Reviews, vol. 12(1), pages 23-43, October.
    22. Charles Sims & Sarah E. Null & Josue Medellin-Azuara & Augustina Odame, 2021. "Hurry Up Or Wait: Are Private Investments In Climate Change Adaptation Delayed?," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 12(04), pages 1-36, November.
    23. Dug Man Lee & Kenneth S. Lyon, 2004. "A Dynamic Analysis of the Global Timber Market under Global Warming: An Integrated Modeling Approach," Southern Economic Journal, John Wiley & Sons, vol. 70(3), pages 467-489, January.
    24. Sohngen, Brent & Tian, Xiaohui, 2016. "Global climate change impacts on forests and markets," Forest Policy and Economics, Elsevier, vol. 72(C), pages 18-26.
    25. Thomas, J. & Brunette, M. & Leblois, A., 2022. "The determinants of adapting forest management practices to climate change: Lessons from a survey of French private forest owners," Forest Policy and Economics, Elsevier, vol. 135(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bareille, François & Chakir, Raja, 2023. "The impact of climate change on agriculture: A repeat-Ricardian analysis," Journal of Environmental Economics and Management, Elsevier, vol. 119(C).
    2. Emanuele Massetti & Steven Van Passel & Camila Apablaza, 2018. "Is Western European Agriculture Resilient to High Temperatures?," CESifo Working Paper Series 7286, CESifo.
    3. Xun Su & Minpeng Chen, 2022. "Econometric Approaches That Consider Farmers’ Adaptation in Estimating the Impacts of Climate Change on Agriculture: A Review," Sustainability, MDPI, vol. 14(21), pages 1-23, October.
    4. Pierre Mérel & Matthew Gammans, 2021. "Climate Econometrics: Can the Panel Approach Account for Long‐Run Adaptation?," American Journal of Agricultural Economics, John Wiley & Sons, vol. 103(4), pages 1207-1238, August.
    5. Abdul Quddoos & Klaus Salhofer & Ulrich B. Morawetz, 2023. "Utilising farm‐level panel data to estimate climate change impacts and adaptation potentials," Journal of Agricultural Economics, Wiley Blackwell, vol. 74(1), pages 75-99, February.
    6. de Ayala, Amaia & Hoyos, David & Mariel, Petr, 2015. "Suitability of discrete choice experiments for landscape management under the European Landscape Convention," Journal of Forest Economics, Elsevier, vol. 21(2), pages 79-96.
    7. Farnaz Pourzand & Kendom Bell, 2021. "How climate affects agricultural land values in Aotearoa New Zealand," Working Papers 21_16, Motu Economic and Public Policy Research.
    8. Tonsor, Glynn T. & Olynk, Nicole & Wolf, Christopher, 2009. "Consumer Preferences for Animal Welfare Attributes: The Case of Gestation Crates," Journal of Agricultural and Applied Economics, Cambridge University Press, vol. 41(3), pages 713-730, December.
    9. Oviedo, José L. & Caparrós, Alejandro & Ruiz-Gauna, Itziar & Campos, Pablo, 2016. "Testing convergent validity in choice experiments: Application to public recreation in Spanish stone pine and cork oak forests," Journal of Forest Economics, Elsevier, vol. 25(C), pages 130-148.
    10. Moretti, Michele & Vanschoenwinkel, Janka & Van Passel, Steven, 2021. "Accounting for externalities in cross-sectional economic models of climate change impacts," Ecological Economics, Elsevier, vol. 185(C).
    11. Huang, Kaixing & Zhao, Hong & Huang, Jikun & Wang, Jinxia & Findlay, Christopher, 2020. "The impact of climate change on the labor allocation: Empirical evidence from China," Journal of Environmental Economics and Management, Elsevier, vol. 104(C).
    12. Liu, Bingcai & Sohngen, Brent, 2020. "Modeling and predicting forest movement: An analysis of timber market and climate change," 2020 Annual Meeting, July 26-28, Kansas City, Missouri 304335, Agricultural and Applied Economics Association.
    13. Jianhong E. Mu & Benjamin M. Sleeter & John T. Abatzoglou & John M. Antle, 2017. "Climate impacts on agricultural land use in the USA: the role of socio-economic scenarios," Climatic Change, Springer, vol. 144(2), pages 329-345, September.
    14. Antonio Accetturo & Matteo Alpino, 2023. "Climate change and Italian agriculture: evidence from weather shocks," Questioni di Economia e Finanza (Occasional Papers) 756, Bank of Italy, Economic Research and International Relations Area.
    15. Ariel Ortiz‐Bobea, 2020. "The Role of Nonfarm Influences in Ricardian Estimates of Climate Change Impacts on US Agriculture," American Journal of Agricultural Economics, John Wiley & Sons, vol. 102(3), pages 934-959, May.
    16. Haghani, Milad & Bliemer, Michiel C.J. & Hensher, David A., 2021. "The landscape of econometric discrete choice modelling research," Journal of choice modelling, Elsevier, vol. 40(C).
    17. Charles D. Kolstad & Frances C. Moore, 2019. "Estimating the Economic Impacts of Climate Change Using Weather Observations," NBER Working Papers 25537, National Bureau of Economic Research, Inc.
    18. Emanuele Massetti & Robert Mendelsohn, 2020. "Temperature thresholds and the effect of warming on American farmland value," Climatic Change, Springer, vol. 161(4), pages 601-615, August.
    19. Charlotte Fabri & Michele Moretti & Steven Van Passel, 2022. "On the (ir)relevance of heatwaves in climate change impacts on European agriculture," Climatic Change, Springer, vol. 174(1), pages 1-20, September.
    20. B. James Deaton & Chad Lawley, 2022. "A survey of literature examining farmland prices: A Canadian focus," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 70(2), pages 95-121, June.

    More about this item

    Keywords

    Climate adaptation; Forestry; Econometric model; Land-use modeling; Land value;
    All these keywords.

    JEL classification:

    • Q23 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation - - - Forestry
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming
    • Q57 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Ecological Economics

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:resene:v:68:y:2022:i:c:s0928765522000124. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505569 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.