IDEAS home Printed from https://ideas.repec.org/a/eee/resene/v61y2020ics0928765519303227.html
   My bibliography  Save this article

Flexible customer willingness to pay for bundled smart home energy products and services

Author

Listed:
  • Daziano, Ricardo A.

Abstract

Energy markets are rapidly changing with smarter, connected, more reliable infrastructure and cleaner generation on the supply side, and more choice, greater control and enhanced flexibility for customers. This paper examines willingness to pay for bundled smart home energy products and information services, using data from a set of two discrete choice experiments that were part of a survey by the regional energy provider of upstate New York. To let the data reveal how preferences are distributed in the population, a logit-mixed logit model in willingness-to-pay space and a combination of observed and unobserved preference heterogeneity was specified and fitted. Results show that residents of Tompkins County are willing to pay more than in other counties for residential storage, and that for home energy management there is an important generational divide with millennials being much more likely to perceive the economic value in the smart energy technologies. The flexible logit-mixed logit estimates provide evidence of important heterogeneity in preferences: whereas most of the population has a positive—albeit rather low—valuation of smart energy products and services, there is a considerable percentage of customers with negative perceptions.

Suggested Citation

  • Daziano, Ricardo A., 2020. "Flexible customer willingness to pay for bundled smart home energy products and services," Resource and Energy Economics, Elsevier, vol. 61(C).
  • Handle: RePEc:eee:resene:v:61:y:2020:i:c:s0928765519303227
    DOI: 10.1016/j.reseneeco.2020.101175
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0928765519303227
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.reseneeco.2020.101175?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jeremy T. Fox & Kyoo il Kim & Stephen P. Ryan & Patrick Bajari, 2011. "A simple estimator for the distribution of random coefficients," Quantitative Economics, Econometric Society, vol. 2(3), pages 381-418, November.
    2. Fosgerau, Mogens & Bierlaire, Michel, 2007. "A practical test for the choice of mixing distribution in discrete choice models," Transportation Research Part B: Methodological, Elsevier, vol. 41(7), pages 784-794, August.
    3. Fosgerau, Mogens & Mabit, Stefan L., 2013. "Easy and flexible mixture distributions," Economics Letters, Elsevier, vol. 120(2), pages 206-210.
    4. Richter, Laura-Lucia & Pollitt, Michael G., 2018. "Which smart electricity service contracts will consumers accept? The demand for compensation in a platform market," Energy Economics, Elsevier, vol. 72(C), pages 436-450.
    5. Daniel McFadden & Kenneth Train, 2000. "Mixed MNL models for discrete response," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 15(5), pages 447-470.
    6. Parsons, George R. & Hidrue, Michael K. & Kempton, Willett & Gardner, Meryl P., 2014. "Willingness to pay for vehicle-to-grid (V2G) electric vehicles and their contract terms," Energy Economics, Elsevier, vol. 42(C), pages 313-324.
    7. Peter Boxall & Wiktor Adamowicz, 2002. "Understanding Heterogeneous Preferences in Random Utility Models: A Latent Class Approach," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 23(4), pages 421-446, December.
    8. Fabian Bastin & Cinzia Cirillo & Philippe L. Toint, 2010. "Estimating Nonparametric Random Utility Models with an Application to the Value of Time in Heterogeneous Populations," Transportation Science, INFORMS, vol. 44(4), pages 537-549, November.
    9. Denzil G. Fiebig & Michael P. Keane & Jordan Louviere & Nada Wasi, 2010. "The Generalized Multinomial Logit Model: Accounting for Scale and Coefficient Heterogeneity," Marketing Science, INFORMS, vol. 29(3), pages 393-421, 05-06.
    10. Train, Kenneth, 2016. "Mixed logit with a flexible mixing distribution," Journal of choice modelling, Elsevier, vol. 19(C), pages 40-53.
    11. Patrick Bajari & Jeremy T. Fox & Stephen P. Ryan, 2007. "Linear Regression Estimation of Discrete Choice Models with Nonparametric Distributions of Random Coefficients," American Economic Review, American Economic Association, vol. 97(2), pages 459-463, May.
    12. Alexandra-Gwyn Paetz & Elisabeth Dütschke & Wolf Fichtner, 2012. "Smart Homes as a Means to Sustainable Energy Consumption: A Study of Consumer Perceptions," Journal of Consumer Policy, Springer, vol. 35(1), pages 23-41, March.
    13. Helms, Thorsten & Loock, Moritz & Bohnsack, René, 2016. "Timing-based business models for flexibility creation in the electric power sector," Energy Policy, Elsevier, vol. 92(C), pages 348-358.
    14. Kubli, Merla & Loock, Moritz & Wüstenhagen, Rolf, 2018. "The flexible prosumer: Measuring the willingness to co-create distributed flexibility," Energy Policy, Elsevier, vol. 114(C), pages 540-548.
    15. Dütschke, Elisabeth & Paetz, Alexandra-Gwyn, 2013. "Dynamic electricity pricing—Which programs do consumers prefer?," Energy Policy, Elsevier, vol. 59(C), pages 226-234.
    16. Kaufmann, Simon & Künzel, Karoline & Loock, Moritz, 2013. "Customer value of smart metering: Explorative evidence from a choice-based conjoint study in Switzerland," Energy Policy, Elsevier, vol. 53(C), pages 229-239.
    17. Bansal, Prateek & Daziano, Ricardo A. & Achtnicht, Martin, 2018. "Extending the logit-mixed logit model for a combination of random and fixed parameters," Journal of choice modelling, Elsevier, vol. 27(C), pages 88-96.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fang, Debin & Wang, Pengyu, 2023. "Optimal real-time pricing and electricity package by retail electric providers based on social learning," Energy Economics, Elsevier, vol. 117(C).
    2. Schueftan, Alejandra & Aravena, Claudia & Reyes, René, 2021. "Financing energy efficiency retrofits in Chilean households: The role of financial instruments, savings and uncertainty in energy transition," Resource and Energy Economics, Elsevier, vol. 66(C).
    3. Gonçalves, Luisa & Patrício, Lia, 2022. "From smart technologies to value cocreation and customer engagement with smart energy services," Energy Policy, Elsevier, vol. 170(C).
    4. Ciarreta, Aitor & Espinosa, Maria Paz & Pizarro-Irizar, Cristina, 2023. "Pricing policies for efficient demand side management in liberalized electricity markets," Economic Modelling, Elsevier, vol. 121(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bansal, Prateek & Daziano, Ricardo A. & Achtnicht, Martin, 2018. "Comparison of parametric and semiparametric representations of unobserved preference heterogeneity in logit models," Journal of choice modelling, Elsevier, vol. 27(C), pages 97-113.
    2. Akshay Vij & Rico Krueger, 2018. "Random taste heterogeneity in discrete choice models: Flexible nonparametric finite mixture distributions," Papers 1802.02299, arXiv.org.
    3. Bansal, Prateek & Daziano, Ricardo A. & Achtnicht, Martin, 2018. "Extending the logit-mixed logit model for a combination of random and fixed parameters," Journal of choice modelling, Elsevier, vol. 27(C), pages 88-96.
    4. Vij, Akshay & Krueger, Rico, 2017. "Random taste heterogeneity in discrete choice models: Flexible nonparametric finite mixture distributions," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 76-101.
    5. Tinessa, Fiore & Marzano, Vittorio & Papola, Andrea, 2020. "Mixing distributions of tastes with a Combination of Nested Logit (CoNL) kernel: Formulation and performance analysis," Transportation Research Part B: Methodological, Elsevier, vol. 141(C), pages 1-23.
    6. Riccardo Scarpa & Cristiano Franceschinis & Mara Thiene, 2017. "A Monte Carlo Evaluation of the Logit-Mixed Logit under Asymmetry and Multimodality," Working Papers in Economics 17/23, University of Waikato.
    7. Bansal, Prateek & Daziano, Ricardo A & Guerra, Erick, 2018. "Minorization-Maximization (MM) algorithms for semiparametric logit models: Bottlenecks, extensions, and comparisons," Transportation Research Part B: Methodological, Elsevier, vol. 115(C), pages 17-40.
    8. Czajkowski, Mikołaj & Budziński, Wiktor, 2019. "Simulation error in maximum likelihood estimation of discrete choice models," Journal of choice modelling, Elsevier, vol. 31(C), pages 73-85.
    9. Krueger, Rico & Rashidi, Taha H. & Vij, Akshay, 2020. "A Dirichlet process mixture model of discrete choice: Comparisons and a case study on preferences for shared automated vehicles," Journal of choice modelling, Elsevier, vol. 36(C).
    10. Caputo, Vincenzina & Scarpa, Riccardo & Nayga, Rodolfo M. & Ortega, David L., 2018. "Are preferences for food quality attributes really normally distributed? An analysis using flexible mixing distributions," Journal of choice modelling, Elsevier, vol. 28(C), pages 10-27.
    11. Train, Kenneth, 2016. "Mixed logit with a flexible mixing distribution," Journal of choice modelling, Elsevier, vol. 19(C), pages 40-53.
    12. Bazzani, Claudia & Palma, Marco A. & Nayga, Rodolfo M., Jr., 2018. "On the use of flexible mixing distributions in WTP space: an induced value choice experiment," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 62(2), April.
    13. Richter, Laura-Lucia & Pollitt, Michael G., 2018. "Which smart electricity service contracts will consumers accept? The demand for compensation in a platform market," Energy Economics, Elsevier, vol. 72(C), pages 436-450.
    14. Bansal, Prateek & Hurtubia, Ricardo & Tirachini, Alejandro & Daziano, Ricardo A., 2019. "Flexible estimates of heterogeneity in crowding valuation in the New York City subway," Journal of choice modelling, Elsevier, vol. 31(C), pages 124-140.
    15. Rico Krueger & Taha H. Rashidi & Akshay Vij, 2019. "Semi-Parametric Hierarchical Bayes Estimates of New Yorkers' Willingness to Pay for Features of Shared Automated Vehicle Services," Papers 1907.09639, arXiv.org.
    16. Rico Krueger & Akshay Vij & Taha H. Rashidi, 2018. "A Dirichlet Process Mixture Model of Discrete Choice," Papers 1801.06296, arXiv.org.
    17. Danaf, Mazen & Atasoy, Bilge & Ben-Akiva, Moshe, 2020. "Logit mixture with inter and intra-consumer heterogeneity and flexible mixing distributions," Journal of choice modelling, Elsevier, vol. 35(C).
    18. Beeramoole, Prithvi Bhat & Arteaga, Cristian & Pinz, Alban & Haque, Md Mazharul & Paz, Alexander, 2023. "Extensive hypothesis testing for estimation of mixed-Logit models," Journal of choice modelling, Elsevier, vol. 47(C).
    19. Bernadeta Gołębiowska, 2020. "Preferences for demand side management—a review of choice experiment studies," Working Papers 2020-05, Faculty of Economic Sciences, University of Warsaw.
    20. Florian Heiss & Stephan Hetzenecker & Maximilian Osterhaus, 2019. "Nonparametric Estimation of the Random Coefficients Model: An Elastic Net Approach," Papers 1909.08434, arXiv.org, revised Sep 2019.

    More about this item

    Keywords

    Discrete choice; Seminonparametrics; Willingness to pay; Logit-mixed logit; Smart energy packages; New energy markets;
    All these keywords.

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • D12 - Microeconomics - - Household Behavior - - - Consumer Economics: Empirical Analysis
    • D47 - Microeconomics - - Market Structure, Pricing, and Design - - - Market Design

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:resene:v:61:y:2020:i:c:s0928765519303227. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505569 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.