IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v81y2018ip1p723-730.html
   My bibliography  Save this article

Marine Hydrokinetic (MHK) systems: Using systems thinking in resource characterization and estimating costs for the practical harvest of electricity from tidal currents

Author

Listed:
  • Domenech, John
  • Eveleigh, Timothy
  • Tanju, Bereket

Abstract

Continuous and predictable shallow water tidal currents represent a promising renewable energy resource for investigation and additional exploitation. A systems thinking approach identifies aggregate properties of MHK systems such as turbine efficiency, transmission and power conditioning losses and leads us to propose that an overall project efficiency value (EEFF, the kW-hours of electricity effectively inserted into the grid) should be used for resource characterization and as an estimate of the practical extraction of energy from tidal currents. This project efficiency value can lead to better cost estimates and ultimately serve as a marker for decisions whether to proceed. By using a systems engineering approach we first determine the practical extraction of kinetic energy from Maine to Texas using National Oceanic Atmospheric Administration (NOAA) CO-OPS’ Mapping and Charting Services Program data. Then, based on case studies of two generating stations and one discontinued station in the United States, we superimpose how those installed costs per kW compare to the resource characterization. This work identifies installed cost per kW for potential locations that exceed a kinetic power density of 100kW for three array sizes with a goal of showing how the key attribute of cost might affect the decision making process when considering Marine Hydrokinetic (MHK) extraction systems.

Suggested Citation

  • Domenech, John & Eveleigh, Timothy & Tanju, Bereket, 2018. "Marine Hydrokinetic (MHK) systems: Using systems thinking in resource characterization and estimating costs for the practical harvest of electricity from tidal currents," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 723-730.
  • Handle: RePEc:eee:rensus:v:81:y:2018:i:p1:p:723-730
    DOI: 10.1016/j.rser.2017.07.063
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032117311322
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2017.07.063?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sanya Carley & Richard Andrews, 2012. "Creating a sustainable U.S. electricity sector: the question of scale," Policy Sciences, Springer;Society of Policy Sciences, vol. 45(2), pages 97-121, June.
    2. Laws, Nicholas D. & Epps, Brenden P., 2016. "Hydrokinetic energy conversion: Technology, research, and outlook," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1245-1259.
    3. Khan, M.J. & Bhuyan, G. & Iqbal, M.T. & Quaicoe, J.E., 2009. "Hydrokinetic energy conversion systems and assessment of horizontal and vertical axis turbines for river and tidal applications: A technology status review," Applied Energy, Elsevier, vol. 86(10), pages 1823-1835, October.
    4. Cordes, Joseph J., 2017. "Using cost-benefit analysis and social return on investment to evaluate the impact of social enterprise: Promises, implementation, and limitations," Evaluation and Program Planning, Elsevier, vol. 64(C), pages 98-104.
    5. Paul Watkiss & Alistair Hunt & William Blyth & Jillian Dyszynski, 2015. "The use of new economic decision support tools for adaptation assessment: A review of methods and applications, towards guidance on applicability," Climatic Change, Springer, vol. 132(3), pages 401-416, October.
    6. Mortimer, N. D., 1991. "Energy analysis of renewable energy sources," Energy Policy, Elsevier, vol. 19(4), pages 374-385, May.
    7. Güney, M.S. & Kaygusuz, K., 2010. "Hydrokinetic energy conversion systems: A technology status review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2996-3004, December.
    8. Denny, Eleanor, 2009. "The economics of tidal energy," Energy Policy, Elsevier, vol. 37(5), pages 1914-1924, May.
    9. Culley, D.M. & Funke, S.W. & Kramer, S.C. & Piggott, M.D., 2016. "Integration of cost modelling within the micro-siting design optimisation of tidal turbine arrays," Renewable Energy, Elsevier, vol. 85(C), pages 215-227.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nachtane, M. & Tarfaoui, M. & Goda, I. & Rouway, M., 2020. "A review on the technologies, design considerations and numerical models of tidal current turbines," Renewable Energy, Elsevier, vol. 157(C), pages 1274-1288.
    2. López, A. & Morán, J.L. & Núñez, L.R. & Somolinos, J.A., 2020. "Study of a cost model of tidal energy farms in early design phases with parametrization and numerical values. Application to a second-generation device," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    3. Gang Li & Weidong Zhu, 2022. "A Review on Up-to-Date Gearbox Technologies and Maintenance of Tidal Current Energy Converters," Energies, MDPI, vol. 15(23), pages 1-24, December.
    4. Mavhura, Emmanuel, 2019. "A systems approach for assessing emergency preparedness in underground mines of Zimbabwe," Resources Policy, Elsevier, vol. 62(C), pages 1-8.
    5. Johan Forslund & Anders Goude & Karin Thomas, 2018. "Validation of a Coupled Electrical and Hydrodynamic Simulation Model for a Vertical Axis Marine Current Energy Converter," Energies, MDPI, vol. 11(11), pages 1-13, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Gang & Zhu, Weidong, 2023. "Tidal current energy harvesting technologies: A review of current status and life cycle assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
    2. Faruk Guner & Hilmi Zenk, 2020. "Experimental, Numerical and Application Analysis of Hydrokinetic Turbine Performance with Fixed Rotating Blades," Energies, MDPI, vol. 13(3), pages 1-15, February.
    3. Niebuhr, C.M. & van Dijk, M. & Neary, V.S. & Bhagwan, J.N., 2019. "A review of hydrokinetic turbines and enhancement techniques for canal installations: Technology, applicability and potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    4. Kumar, Anuj & Saini, R.P., 2016. "Performance parameters of Savonius type hydrokinetic turbine – A Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 289-310.
    5. Segura, E. & Morales, R. & Somolinos, J.A. & López, A., 2017. "Techno-economic challenges of tidal energy conversion systems: Current status and trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 536-550.
    6. Vermaak, Herman Jacobus & Kusakana, Kanzumba & Koko, Sandile Philip, 2014. "Status of micro-hydrokinetic river technology in rural applications: A review of literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 625-633.
    7. Mansoor Ahmed Zaib & Arbaz Waqar & Shoukat Abbas & Saeed Badshah & Sajjad Ahmad & Muhammad Amjad & Seyed Saeid Rahimian Koloor & Mohamed Eldessouki, 2022. "Effect of Blade Diameter on the Performance of Horizontal-Axis Ocean Current Turbine," Energies, MDPI, vol. 15(15), pages 1-13, July.
    8. Segura, E. & Morales, R. & Somolinos, J.A., 2018. "A strategic analysis of tidal current energy conversion systems in the European Union," Applied Energy, Elsevier, vol. 212(C), pages 527-551.
    9. Ifaei, Pouya & Tayerani Charmchi, Amir Saman & Loy-Benitez, Jorge & Yang, Rebecca Jing & Yoo, ChangKyoo, 2022. "A data-driven analytical roadmap to a sustainable 2030 in South Korea based on optimal renewable microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    10. Jha, Sunil Kr. & Bilalovic, Jasmin & Jha, Anju & Patel, Nilesh & Zhang, Han, 2017. "Renewable energy: Present research and future scope of Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 297-317.
    11. Holanda, Patrícia da Silva & Blanco, Claudio José Cavalcante & Mesquita, André Luiz Amarante & Brasil Junior, Antônio César Pinho & de Figueiredo, Nelio Moura & Macêdo, Emanuel Negrão & Secretan, Yves, 2017. "Assessment of hydrokinetic energy resources downstream of hydropower plants," Renewable Energy, Elsevier, vol. 101(C), pages 1203-1214.
    12. Sun, Ke & Ji, Renwei & Zhang, Jianhua & Li, Yan & Wang, Bin, 2021. "Investigations on the hydrodynamic interference of the multi-rotor vertical axis tidal current turbine," Renewable Energy, Elsevier, vol. 169(C), pages 752-764.
    13. Bakhshandeh Rostami, Ali & Fernandes, Antonio Carlos, 2015. "The effect of inertia and flap on autorotation applied for hydrokinetic energy harvesting," Applied Energy, Elsevier, vol. 143(C), pages 312-323.
    14. Yuce, M. Ishak & Muratoglu, Abdullah, 2015. "Hydrokinetic energy conversion systems: A technology status review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 72-82.
    15. Kamal, Md. Mustafa & Saini, R.P., 2022. "A numerical investigation on the influence of savonius blade helicity on the performance characteristics of hybrid cross-flow hydrokinetic turbine," Renewable Energy, Elsevier, vol. 190(C), pages 788-804.
    16. Cruz, M. & Henriques, R. & Pinho, J.L. & Avilez-Valente, P. & Bio, A. & Iglesias, I., 2023. "Assessment of the potential for hydrokinetic energy production in the Douro river estuary under sea level rise scenarios," Energy, Elsevier, vol. 271(C).
    17. Montoya Ramírez, Rubén D. & Cuervo, Felipe Isaza & Monsalve Rico, César Antonio, 2016. "Technical and financial valuation of hydrokinetic power in the discharge channels of large hydropower plants in Colombia: A case study," Renewable Energy, Elsevier, vol. 99(C), pages 136-147.
    18. Vazquez, A. & Iglesias, G., 2016. "Capital costs in tidal stream energy projects – A spatial approach," Energy, Elsevier, vol. 107(C), pages 215-226.
    19. Liu, Yue & Packey, Daniel J., 2014. "Combined-cycle hydropower systems – The potential of applying hydrokinetic turbines in the tailwaters of existing conventional hydropower stations," Renewable Energy, Elsevier, vol. 66(C), pages 228-231.
    20. Kai-Wern Ng & Wei-Haur Lam & Khai-Ching Ng, 2013. "2002–2012: 10 Years of Research Progress in Horizontal-Axis Marine Current Turbines," Energies, MDPI, vol. 6(3), pages 1-30, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:81:y:2018:i:p1:p:723-730. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.