IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v107y2016icp215-226.html
   My bibliography  Save this article

Capital costs in tidal stream energy projects – A spatial approach

Author

Listed:
  • Vazquez, A.
  • Iglesias, G.

Abstract

Tidal stream energy projects involve high amounts of capital, for which ex-ante economic assessments are crucial. Unfortunately, the existing models to estimate the capital costs of a tidal stream energy project are often oversimplified. Focused on single estimates on a per installed power basis, such models fail to capture the all-important sensitivity of the capital costs to project site-specific characteristics (water depth, distance to the shoreline, etc.) The objective of this work is twofold: (1) to develop a new formulation for estimating the capital costs of a tidal stream farm, and (2) to implement this formula in a Matlab-based tool coupled with a Navier-Stokes solver and thus deliver the spatial distribution of this cost. As a case study, the new tool is applied to the Bristol Channel – the single largest resource area for tidal energy in the UK. Here, the best sites to install tidal stream farms are identified, with a cost comparable to that of offshore wind energy. Simulation results show that the proposed method is more efficient than the existing approaches. The results of this work have relevant policy implications in that they serve as decision criteria for allocating tidal stream projects and for designating supporting mechanisms.

Suggested Citation

  • Vazquez, A. & Iglesias, G., 2016. "Capital costs in tidal stream energy projects – A spatial approach," Energy, Elsevier, vol. 107(C), pages 215-226.
  • Handle: RePEc:eee:energy:v:107:y:2016:i:c:p:215-226
    DOI: 10.1016/j.energy.2016.03.123
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054421630370X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.03.123?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ramos, V. & Carballo, R. & Álvarez, M. & Sánchez, M. & Iglesias, G., 2013. "Assessment of the impacts of tidal stream energy through high-resolution numerical modeling," Energy, Elsevier, vol. 61(C), pages 541-554.
    2. Malki, Rami & Masters, Ian & Williams, Alison J. & Nick Croft, T., 2014. "Planning tidal stream turbine array layouts using a coupled blade element momentum – computational fluid dynamics model," Renewable Energy, Elsevier, vol. 63(C), pages 46-54.
    3. Vazquez, A. & Iglesias, G., 2015. "LCOE (levelised cost of energy) mapping: A new geospatial tool for tidal stream energy," Energy, Elsevier, vol. 91(C), pages 192-201.
    4. Vicinanza, D. & Contestabile, P. & Ferrante, V., 2013. "Wave energy potential in the north-west of Sardinia (Italy)," Renewable Energy, Elsevier, vol. 50(C), pages 506-521.
    5. Astariz, S. & Perez-Collazo, C. & Abanades, J. & Iglesias, G., 2015. "Towards the optimal design of a co-located wind-wave farm," Energy, Elsevier, vol. 84(C), pages 15-24.
    6. Allan, Grant & Gilmartin, Michelle & McGregor, Peter & Swales, Kim, 2011. "Levelised costs of Wave and Tidal energy in the UK: Cost competitiveness and the importance of "banded" Renewables Obligation Certificates," Energy Policy, Elsevier, vol. 39(1), pages 23-39, January.
    7. Leete, Simeon & Xu, Jingjing & Wheeler, David, 2013. "Investment barriers and incentives for marine renewable energy in the UK: An analysis of investor preferences," Energy Policy, Elsevier, vol. 60(C), pages 866-875.
    8. Ederer, Nikolaus, 2015. "Evaluating capital and operating cost efficiency of offshore wind farms: A DEA approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1034-1046.
    9. Iglesias, G. & Sánchez, M. & Carballo, R. & Fernández, H., 2012. "The TSE index – A new tool for selecting tidal stream sites in depth-limited regions," Renewable Energy, Elsevier, vol. 48(C), pages 350-357.
    10. Robins, Peter E. & Neill, Simon P. & Lewis, Matt J. & Ward, Sophie L., 2015. "Characterising the spatial and temporal variability of the tidal-stream energy resource over the northwest European shelf seas," Applied Energy, Elsevier, vol. 147(C), pages 510-522.
    11. Sanchez, M. & Carballo, R. & Ramos, V. & Iglesias, G., 2014. "Floating vs. bottom-fixed turbines for tidal stream energy: A comparative impact assessment," Energy, Elsevier, vol. 72(C), pages 691-701.
    12. Ramos, V. & Carballo, R. & Álvarez, M. & Sánchez, M. & Iglesias, G., 2014. "A port towards energy self-sufficiency using tidal stream power," Energy, Elsevier, vol. 71(C), pages 432-444.
    13. Veigas, M. & Ramos, V. & Iglesias, G., 2014. "A wave farm for an island: Detailed effects on the nearshore wave climate," Energy, Elsevier, vol. 69(C), pages 801-812.
    14. Lee, Joo-Suk & Yoo, Seung-Hoon, 2009. "Measuring the environmental costs of tidal power plant construction: A choice experiment study," Energy Policy, Elsevier, vol. 37(12), pages 5069-5074, December.
    15. del Río, Pablo & Cerdá, Emilio, 2014. "The policy implications of the different interpretations of the cost-effectiveness of renewable electricity support," Energy Policy, Elsevier, vol. 64(C), pages 364-372.
    16. Verbruggen, Aviel & Fischedick, Manfred & Moomaw, William & Weir, Tony & Nadaï, Alain & Nilsson, Lars J. & Nyboer, John & Sathaye, Jayant, 2010. "Renewable energy costs, potentials, barriers: Conceptual issues," Energy Policy, Elsevier, vol. 38(2), pages 850-861, February.
    17. Astariz, S. & Perez-Collazo, C. & Abanades, J. & Iglesias, G., 2015. "Co-located wave-wind farms: Economic assessment as a function of layout," Renewable Energy, Elsevier, vol. 83(C), pages 837-849.
    18. Ouyang, Xiaoling & Lin, Boqiang, 2014. "Levelized cost of electricity (LCOE) of renewable energies and required subsidies in China," Energy Policy, Elsevier, vol. 70(C), pages 64-73.
    19. Neill, Simon P. & Hashemi, M. Reza & Lewis, Matt J., 2014. "The role of tidal asymmetry in characterizing the tidal energy resource of Orkney," Renewable Energy, Elsevier, vol. 68(C), pages 337-350.
    20. Khan, M.J. & Bhuyan, G. & Iqbal, M.T. & Quaicoe, J.E., 2009. "Hydrokinetic energy conversion systems and assessment of horizontal and vertical axis turbines for river and tidal applications: A technology status review," Applied Energy, Elsevier, vol. 86(10), pages 1823-1835, October.
    21. Astariz, S. & Iglesias, G., 2015. "The economics of wave energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 397-408.
    22. Bryden, I.G & Naik, S & Fraenkel, P & Bullen, C.R, 1998. "Matching tidal current plants to local flow conditions," Energy, Elsevier, vol. 23(9), pages 699-709.
    23. Dalton, Gordon & Allan, Grant & Beaumont, Nicola & Georgakaki, Aliki & Hacking, Nick & Hooper, Tara & Kerr, Sandy & O’Hagan, Anne Marie & Reilly, Kieran & Ricci, Pierpaolo & Sheng, Wanan & Stallard, T, 2015. "Economic and socio-economic assessment methods for ocean renewable energy: Public and private perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 850-878.
    24. Johnstone, C.M. & Pratt, D. & Clarke, J.A. & Grant, A.D., 2013. "A techno-economic analysis of tidal energy technology," Renewable Energy, Elsevier, vol. 49(C), pages 101-106.
    25. Gross, Robert & Blyth, William & Heptonstall, Philip, 2010. "Risks, revenues and investment in electricity generation: Why policy needs to look beyond costs," Energy Economics, Elsevier, vol. 32(4), pages 796-804, July.
    26. Atwater, Joel F. & Lawrence, Gregory A., 2011. "Regulatory, design and methodological impacts in determining tidal-in-stream power resource potential," Energy Policy, Elsevier, vol. 39(3), pages 1694-1698, March.
    27. Carballo, R. & Iglesias, G. & Castro, A., 2009. "Numerical model evaluation of tidal stream energy resources in the Ría de Muros (NW Spain)," Renewable Energy, Elsevier, vol. 34(6), pages 1517-1524.
    28. Branker, K. & Pathak, M.J.M. & Pearce, J.M., 2011. "A review of solar photovoltaic levelized cost of electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4470-4482.
    29. Evans, P. & Mason-Jones, A. & Wilson, C. & Wooldridge, C. & O'Doherty, T. & O'Doherty, D., 2015. "Constraints on extractable power from energetic tidal straits," Renewable Energy, Elsevier, vol. 81(C), pages 707-722.
    30. Sánchez, M. & Carballo, R. & Ramos, V. & Iglesias, G., 2014. "Energy production from tidal currents in an estuary: A comparative study of floating and bottom-fixed turbines," Energy, Elsevier, vol. 77(C), pages 802-811.
    31. Denny, Eleanor, 2009. "The economics of tidal energy," Energy Policy, Elsevier, vol. 37(5), pages 1914-1924, May.
    32. Pérez-Collazo, C. & Greaves, D. & Iglesias, G., 2015. "A review of combined wave and offshore wind energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 141-153.
    33. Lewis, M. & Neill, S.P. & Robins, P.E. & Hashemi, M.R., 2015. "Resource assessment for future generations of tidal-stream energy arrays," Energy, Elsevier, vol. 83(C), pages 403-415.
    34. Vazquez, A. & Iglesias, G., 2016. "Grid parity in tidal stream energy projects: An assessment of financial, technological and economic LCOE input parameters," Technological Forecasting and Social Change, Elsevier, vol. 104(C), pages 89-101.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jonathan Cohen & Michael B. Kane & Alexia Marriott & Franklin Ollivierre & Krissy Govertsen, 2023. "Economic Controls Co-Design of Hybrid Microgrids with Tidal/PV Generation and Lithium-Ion/Flow Battery Storage," Energies, MDPI, vol. 16(6), pages 1-18, March.
    2. Juan F. Bárcenas Graniel & Jassiel V. H. Fontes & Hector F. Gomez Garcia & Rodolfo Silva, 2021. "Assessing Hydrokinetic Energy in the Mexican Caribbean: A Case Study in the Cozumel Channel," Energies, MDPI, vol. 14(15), pages 1-23, July.
    3. Khojasteh, Danial & Lewis, Matthew & Tavakoli, Sasan & Farzadkhoo, Maryam & Felder, Stefan & Iglesias, Gregorio & Glamore, William, 2022. "Sea level rise will change estuarine tidal energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    4. Lande-Sudall, D. & Stallard, T. & Stansby, P., 2019. "Co-located deployment of offshore wind turbines with tidal stream turbine arrays for improved cost of electricity generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 492-503.
    5. Fouz, D.M. & Carballo, R. & López, I. & González, X.P. & Iglesias, G., 2023. "A methodology for cost-effective analysis of hydrokinetic energy projects," Energy, Elsevier, vol. 282(C).
    6. Francisco Bañuelos-García & Michael Ring & Edgar Mendoza & Rodolfo Silva, 2021. "A Design Procedure for Anchors of Floating Ocean Current Turbines on Weak Rock," Energies, MDPI, vol. 14(21), pages 1-31, November.
    7. Li, Ming & Cao, Sunliang & Zhu, Xiaolin & Xu, Yang, 2022. "Techno-economic analysis of the transition towards the large-scale hybrid wind-tidal supported coastal zero-energy communities," Applied Energy, Elsevier, vol. 316(C).
    8. Jahanshahi, Akram & Kamali, Mohammadreza & Khalaj, Mohammadreza & Khodaparast, Zahra, 2019. "Delphi-based prioritization of economic criteria for development of wave and tidal energy technologies," Energy, Elsevier, vol. 167(C), pages 819-827.
    9. Almoghayer, Mohammed A. & Woolf, David K. & Kerr, Sandy & Davies, Gareth, 2022. "Integration of tidal energy into an island energy system – A case study of Orkney islands," Energy, Elsevier, vol. 242(C).
    10. Fouz, D.M. & Carballo, R. & López, I. & Iglesias, G., 2022. "A holistic methodology for hydrokinetic energy site selection," Applied Energy, Elsevier, vol. 317(C).
    11. Segura, E. & Morales, R. & Somolinos, J.A., 2018. "Economic-financial modeling for marine current harnessing projects," Energy, Elsevier, vol. 158(C), pages 859-880.
    12. Yang, Zhixue & Ren, Zhouyang & Li, Zhenwen & Xu, Yan & Li, Hui & Li, Wenyuan & Hu, Xiuqiong, 2022. "A comprehensive analysis method for levelized cost of energy in tidal current power generation farms," Renewable Energy, Elsevier, vol. 182(C), pages 982-991.
    13. Álvarez, M. & Ramos, V. & Carballo, R. & Arean, N. & Torres, M. & Iglesias, G., 2020. "The influence of dredging for locating a tidal stream energy farm," Renewable Energy, Elsevier, vol. 146(C), pages 242-253.
    14. Zoe Goss & Daniel Coles & Matthew Piggott, 2021. "Economic analysis of tidal stream turbine arrays: a review," Papers 2105.04718, arXiv.org.
    15. del Horno, L. & Segura, E. & Morales, R. & Somolinos, J.A., 2020. "Exhaustive closed loop behavior of an one degree of freedom first-generation device for harnessing energy from marine currents," Applied Energy, Elsevier, vol. 276(C).
    16. Loisel, Rodica & Sanchez-Angulo, Martin & Schoefs, Franck & Gaillard, Alexandre, 2018. "Integration of tidal range energy with undersea pumped storage," Renewable Energy, Elsevier, vol. 126(C), pages 38-48.
    17. Goss, Z.L. & Coles, D.S. & Kramer, S.C. & Piggott, M.D., 2021. "Efficient economic optimisation of large-scale tidal stream arrays," Applied Energy, Elsevier, vol. 295(C).
    18. El Hage, Hicham & Herez, Amal & Ramadan, Mohamad & Bazzi, Hassan & Khaled, Mahmoud, 2018. "An investigation on solar drying: A review with economic and environmental assessment," Energy, Elsevier, vol. 157(C), pages 815-829.
    19. Radfar, Soheil & Panahi, Roozbeh & Javaherchi, Teymour & Filom, Siyavash & Mazyaki, Ahmad Rezaee, 2017. "A comprehensive insight into tidal stream energy farms in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 323-338.
    20. Khojasteh, Danial & Chen, Shengyang & Felder, Stefan & Glamore, William & Hashemi, M. Reza & Iglesias, Gregorio, 2022. "Sea level rise changes estuarine tidal stream energy," Energy, Elsevier, vol. 239(PE).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vazquez, A. & Iglesias, G., 2016. "Grid parity in tidal stream energy projects: An assessment of financial, technological and economic LCOE input parameters," Technological Forecasting and Social Change, Elsevier, vol. 104(C), pages 89-101.
    2. Vazquez, A. & Iglesias, G., 2015. "LCOE (levelised cost of energy) mapping: A new geospatial tool for tidal stream energy," Energy, Elsevier, vol. 91(C), pages 192-201.
    3. Álvarez, M. & Ramos, V. & Carballo, R. & Arean, N. & Torres, M. & Iglesias, G., 2020. "The influence of dredging for locating a tidal stream energy farm," Renewable Energy, Elsevier, vol. 146(C), pages 242-253.
    4. Fouz, D.M. & Carballo, R. & López, I. & González, X.P. & Iglesias, G., 2023. "A methodology for cost-effective analysis of hydrokinetic energy projects," Energy, Elsevier, vol. 282(C).
    5. Fouz, D.M. & Carballo, R. & López, I. & Iglesias, G., 2022. "A holistic methodology for hydrokinetic energy site selection," Applied Energy, Elsevier, vol. 317(C).
    6. Evans, P. & Mason-Jones, A. & Wilson, C. & Wooldridge, C. & O'Doherty, T. & O'Doherty, D., 2015. "Constraints on extractable power from energetic tidal straits," Renewable Energy, Elsevier, vol. 81(C), pages 707-722.
    7. Khojasteh, Danial & Lewis, Matthew & Tavakoli, Sasan & Farzadkhoo, Maryam & Felder, Stefan & Iglesias, Gregorio & Glamore, William, 2022. "Sea level rise will change estuarine tidal energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    8. Segura, E. & Morales, R. & Somolinos, J.A., 2018. "A strategic analysis of tidal current energy conversion systems in the European Union," Applied Energy, Elsevier, vol. 212(C), pages 527-551.
    9. Marta-Almeida, Martinho & Cirano, Mauro & Guedes Soares, Carlos & Lessa, Guilherme C., 2017. "A numerical tidal stream energy assessment study for Baía de Todos os Santos, Brazil," Renewable Energy, Elsevier, vol. 107(C), pages 271-287.
    10. Astariz, S. & Iglesias, G., 2016. "Co-located wind and wave energy farms: Uniformly distributed arrays," Energy, Elsevier, vol. 113(C), pages 497-508.
    11. Takvor H. Soukissian & Dimitra Denaxa & Flora Karathanasi & Aristides Prospathopoulos & Konstantinos Sarantakos & Athanasia Iona & Konstantinos Georgantas & Spyridon Mavrakos, 2017. "Marine Renewable Energy in the Mediterranean Sea: Status and Perspectives," Energies, MDPI, vol. 10(10), pages 1-56, September.
    12. Zeyringer, Marianne & Fais, Birgit & Keppo, Ilkka & Price, James, 2018. "The potential of marine energy technologies in the UK – Evaluation from a systems perspective," Renewable Energy, Elsevier, vol. 115(C), pages 1281-1293.
    13. Guillou, Nicolas & Thiébot, Jérôme, 2016. "The impact of seabed rock roughness on tidal stream power extraction," Energy, Elsevier, vol. 112(C), pages 762-773.
    14. Sánchez, M. & Carballo, R. & Ramos, V. & Iglesias, G., 2014. "Energy production from tidal currents in an estuary: A comparative study of floating and bottom-fixed turbines," Energy, Elsevier, vol. 77(C), pages 802-811.
    15. Astariz, S. & Iglesias, G., 2017. "The collocation feasibility index – A method for selecting sites for co-located wave and wind farms," Renewable Energy, Elsevier, vol. 103(C), pages 811-824.
    16. Khojasteh, Danial & Chen, Shengyang & Felder, Stefan & Glamore, William & Hashemi, M. Reza & Iglesias, Gregorio, 2022. "Sea level rise changes estuarine tidal stream energy," Energy, Elsevier, vol. 239(PE).
    17. Jenkins, Lekelia Danielle & Dreyer, Stacia Jeanne & Polis, Hilary Jacqueline & Beaver, Ezra & Kowalski, Adam A. & Linder, Hannah L. & McMillin, Thomas Neal & McTiernan, Kaylie Laura & Rogier, Thea The, 2018. "Human dimensions of tidal energy: A review of theories and frameworks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 323-337.
    18. Zoe Goss & Daniel Coles & Matthew Piggott, 2021. "Economic analysis of tidal stream turbine arrays: a review," Papers 2105.04718, arXiv.org.
    19. Sharay Astariz & Gregorio Iglesias, 2015. "Enhancing Wave Energy Competitiveness through Co-Located Wind and Wave Energy Farms. A Review on the Shadow Effect," Energies, MDPI, vol. 8(7), pages 1-23, July.
    20. Segura, E. & Morales, R. & Somolinos, J.A. & López, A., 2017. "Techno-economic challenges of tidal energy conversion systems: Current status and trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 536-550.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:107:y:2016:i:c:p:215-226. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.