IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v61y2016icp266-279.html
   My bibliography  Save this article

Potential contribution of renewables to the improvement of living conditions of poor rural households in developing countries: Cameroon׳s case study

Author

Listed:
  • Mboumboue, Edouard
  • Njomo, Donatien

Abstract

Energy is considered as a key source for the future and plays a pivotal role in its socioeconomic development by raising the standard of living and the quality of life. It is critical to achieving virtually all the Millennium Development Goals (MDGs) and today, all the Sustainable Development Goals (SDGs). Whether, it is electricity for schools or clinics, energy for the delivery of health, education and sanitation, services, clean fuel to reduce indoor pollution, energy for pumping water or heat for cooking and water boiling, energy in all its forms will be required to achieve these ends. This paper examines the relationship between renewables and living conditions of poor rural households in developing countries with a particular focus on Cameroon. Its goal is threefold: first, analyzing the energy situation of the country and the living standard of its rural households; second, promoting renewables usage; and third, formulating consolidated policy recommendations to foster the diffusion of profitable renewable structures. It globally aims to encourage decision-makers to increase the share of renewables in the energy mix and to integrate into their development policies the concept of Sustainable Development, thrifty in resources and low carbon content. From this study, we found that in national average, the solar radiation received in Cameroon along the year is 4.2824KWhm−2d−1. This allows us to evaluate its solar potential at 7.431×108GWh per year, representing 128,988 times the total electric production of the country estimated in 2014 at 5.761 billion kWh. In sub-Saharan Africa region, Cameroon has the second largest biomass potential (with 21 million hectares of forest) and the second largest hydroelectric potential (with 294TWh/year). In spite these enormous potentials, poverty affects more than 50% of rural households in Cameroon and less than 10% of them have access to modern energies.

Suggested Citation

  • Mboumboue, Edouard & Njomo, Donatien, 2016. "Potential contribution of renewables to the improvement of living conditions of poor rural households in developing countries: Cameroon׳s case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 266-279.
  • Handle: RePEc:eee:rensus:v:61:y:2016:i:c:p:266-279
    DOI: 10.1016/j.rser.2016.04.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S136403211630020X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2016.04.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wirba, Asan Vernyuy & Abubakar Mas'ud, Abdullahi & Muhammad-Sukki, Firdaus & Ahmad, Salman & Mat Tahar, Razman & Abdul Rahim, Ruzairi & Munir, Abu Bakar & Karim, Md Ershadul, 2015. "Renewable energy potentials in Cameroon: Prospects and challenges," Renewable Energy, Elsevier, vol. 76(C), pages 560-565.
    2. World Commission on Environment and Development,, 1987. "Our Common Future," OUP Catalogue, Oxford University Press, number 9780192820808.
    3. Abdeshahian, Peyman & Lim, Jeng Shiun & Ho, Wai Shin & Hashim, Haslenda & Lee, Chew Tin, 2016. "Potential of biogas production from farm animal waste in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 714-723.
    4. Karekezi, Stephen & Kimani, John, 2002. "Status of power sector reform in Africa: impact on the poor," Energy Policy, Elsevier, vol. 30(11-12), pages 923-945, September.
    5. Abanda, F.H., 2012. "Renewable energy sources in Cameroon: Potentials, benefits and enabling environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4557-4562.
    6. Engelken, Maximilian & Römer, Benedikt & Drescher, Marcus & Welpe, Isabell M. & Picot, Arnold, 2016. "Comparing drivers, barriers, and opportunities of business models for renewable energies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 795-809.
    7. Scarlat, N. & Motola, V. & Dallemand, J.F. & Monforti-Ferrario, F. & Mofor, Linus, 2015. "Evaluation of energy potential of Municipal Solid Waste from African urban areas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1269-1286.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Jing & Huang, Fubin & Wang, Zihan & Shuai, Chuanmin, 2021. "What is the anti-poverty effect of solar PV poverty alleviation projects? Evidence from rural China," Energy, Elsevier, vol. 218(C).
    2. Suman, A., 2021. "Role of renewable energy technologies in climate change adaptation and mitigation: A brief review from Nepal," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    3. Hoffman, Lauren A. & Ngo, Truc T., 2018. "Affordable solar thermal water heating solution for rural Dominican Republic," Renewable Energy, Elsevier, vol. 115(C), pages 1220-1230.
    4. Tiam Kapen, Pascalin & Jeutho Gouajio, Marinette & Yemélé, David, 2020. "Analysis and efficient comparison of ten numerical methods in estimating Weibull parameters for wind energy potential: Application to the city of Bafoussam, Cameroon," Renewable Energy, Elsevier, vol. 159(C), pages 1188-1198.
    5. Xu, Li & Zhang, Qin & Shi, Xunpeng, 2019. "Stakeholders strategies in poverty alleviation and clean energy access: A case study of China's PV poverty alleviation program," Energy Policy, Elsevier, vol. 135(C).
    6. Prinsloo, Gerro & Mammoli, Andrea & Dobson, Robert, 2016. "Discrete cogeneration optimization with storage capacity decision support for dynamic hybrid solar combined heat and power systems in isolated rural villages," Energy, Elsevier, vol. 116(P1), pages 1051-1064.
    7. Muhumuza, Ronald & Zacharopoulos, Aggelos & Mondol, Jayanta Deb & Smyth, Mervyn & Pugsley, Adrian, 2018. "Energy consumption levels and technical approaches for supporting development of alternative energy technologies for rural sectors of developing countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 90-102.
    8. Sun, Tao & Shan, Ming & Rong, Xing & Yang, Xudong, 2022. "Estimating the spatial distribution of solar photovoltaic power generation potential on different types of rural rooftops using a deep learning network applied to satellite images," Applied Energy, Elsevier, vol. 315(C).
    9. Shahsavari, Amir & Akbari, Morteza, 2018. "Potential of solar energy in developing countries for reducing energy-related emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 275-291.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tiam Kapen, Pascalin & Jeutho Gouajio, Marinette & Yemélé, David, 2020. "Analysis and efficient comparison of ten numerical methods in estimating Weibull parameters for wind energy potential: Application to the city of Bafoussam, Cameroon," Renewable Energy, Elsevier, vol. 159(C), pages 1188-1198.
    2. Muh, Erasmus & Amara, Sofiane & Tabet, Fouzi, 2018. "Sustainable energy policies in Cameroon: A holistic overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3420-3429.
    3. Kenfack, Joseph & Nzotcha, Urbain & Voufo, Joseph & Ngohe-Ekam, Paul Salomon & Nsangou, Jean Calvin & Bignom, Blaise, 2021. "Cameroon's hydropower potential and development under the vision of Central Africa power pool (CAPP): A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    4. Muh, Erasmus & Tabet, Fouzi, 2019. "Comparative analysis of hybrid renewable energy systems for off-grid applications in Southern Cameroons," Renewable Energy, Elsevier, vol. 135(C), pages 41-54.
    5. Carley, Sanya & Desai, Sameeksha & Bazilian, Morgan, 2012. "Energy-Based Economic Development: Mapping the Developing Country Context," Energy: Resources and Markets 123278, Fondazione Eni Enrico Mattei (FEEM).
    6. Aliyu, Abubakar Sadiq & Dada, Joseph O. & Adam, Ibrahim Khalil, 2015. "Current status and future prospects of renewable energy in Nigeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 336-346.
    7. Michael Acheampong & Qiuyan Yu & Funda Cansu Ertem & Lucy Deba Enomah Ebude & Shakhawat Tanim & Michael Eduful & Mehrdad Vaziri & Erick Ananga, 2019. "Is Ghana Ready to Attain Sustainable Development Goal (SDG) Number 7?—A Comprehensive Assessment of Its Renewable Energy Potential and Pitfalls," Energies, MDPI, vol. 12(3), pages 1-40, January.
    8. Bundhoo, Zumar M.A., 2018. "Renewable energy exploitation in the small island developing state of Mauritius: Current practice and future potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2029-2038.
    9. Mas’ud, Abdullahi Abubakar & Vernyuy Wirba, Asan & Muhammad-Sukki, Firdaus & Mas’ud, Ibrahim Abubakar & Munir, Abu Bakar & Md Yunus, Norhidayah, 2015. "An assessment of renewable energy readiness in Africa: Case study of Nigeria and Cameroon," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 775-784.
    10. Mechthild Donner & Anne Verniquet & Jan Broeze & Katrin Kayser & Hugo de Vries, 2021. "Critical success and risk factors for circular business models valorising agricultural waste and by-products," Post-Print hal-03004851, HAL.
    11. Cornelis Leeuwen & Jos Frijns & Annemarie Wezel & Frans Ven, 2012. "City Blueprints: 24 Indicators to Assess the Sustainability of the Urban Water Cycle," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(8), pages 2177-2197, June.
    12. CHEN, Helen S.Y., 2020. "Designing Sustainable Humanitarian Supply Chains," OSF Preprints m82ar, Center for Open Science.
    13. Jim Butcher, 2006. "The United Nations International Year of Ecotourism: a critical analysis of development implications," Progress in Development Studies, , vol. 6(2), pages 146-156, April.
    14. Denise Ravet, 2011. "Lean production: the link between supply chain and sustainable development in an international environment," Post-Print hal-00691666, HAL.
    15. Mara Del Baldo, 2012. "Corporate social responsibility and corporate governance in Italian SMEs: the experience of some “spirited businesses”," Journal of Management & Governance, Springer;Accademia Italiana di Economia Aziendale (AIDEA), vol. 16(1), pages 1-36, February.
    16. Megan Devonald & Nicola Jones & Sally Youssef, 2022. "‘We Have No Hope for Anything’: Exploring Interconnected Economic, Social and Environmental Risks to Adolescents in Lebanon," Sustainability, MDPI, vol. 14(4), pages 1-17, February.
    17. Rigby, Dan & Woodhouse, Phil & Young, Trevor & Burton, Michael, 2001. "Constructing a farm level indicator of sustainable agricultural practice," Ecological Economics, Elsevier, vol. 39(3), pages 463-478, December.
    18. Michael Howes & Liana Wortley & Ruth Potts & Aysin Dedekorkut-Howes & Silvia Serrao-Neumann & Julie Davidson & Timothy Smith & Patrick Nunn, 2017. "Environmental Sustainability: A Case of Policy Implementation Failure?," Sustainability, MDPI, vol. 9(2), pages 1-17, January.
    19. Shiferaw, Bekele & Holden, Stein, 1999. "Soil Erosion and Smallholders' Conservation Decisions in the Highlands of Ethiopia," World Development, Elsevier, vol. 27(4), pages 739-752, April.
    20. Ibrahim Ari & Muammer Koc, 2018. "Sustainable Financing for Sustainable Development: Understanding the Interrelations between Public Investment and Sovereign Debt," Sustainability, MDPI, vol. 10(11), pages 1-25, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:61:y:2016:i:c:p:266-279. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.