IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v51y2015icp830-846.html
   My bibliography  Save this article

On reliability and flexibility of sustainable energy application route for vehicles in China

Author

Listed:
  • Sun, Zuo-Yu
  • Li, Guo-Xiu

Abstract

China has been pushed to the brink of unsustainability by the foreseeable depletion of fossil-fuels and the observable deterioration of natural-environment, and transportation sector (especially the fuel consumed by on-road vehicles) is one utmost essential factor to the gigantic crisis. Therefore, making thinks and discussions upon the future route of vehicle power is significant to the sustainable development of China. For providing beneficial and reliable suggestions to a reasonable and scientific design on China׳s future route of vehicle power, the present article makes analysis and discussions in two steps. In the first step, three driven modes (including ICEs driven, electric driven, and hybrid driven) are reviewed on the current status in China, and the reliability and flexibility of each mode has been discussed upon the maturity of technologies, actual effects on energy saving with emissions reducing, and the commercialization potential. In the second step, the reliability and flexibility of three kinds of alternative fuel (including fossil-based fuels, biomass-based fuels, and hydrogen) have been analyzed and discussed, and the effects of energy dependence and potential energy supply are considered. Upon the analysis and discussions, the promising routes of China׳s vehicle power in short-and-medium term and medium-and-long term have been prompted.

Suggested Citation

  • Sun, Zuo-Yu & Li, Guo-Xiu, 2015. "On reliability and flexibility of sustainable energy application route for vehicles in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 830-846.
  • Handle: RePEc:eee:rensus:v:51:y:2015:i:c:p:830-846
    DOI: 10.1016/j.rser.2015.06.042
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032115006140
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2015.06.042?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fangzhu Zhang & Philip Cooke, 2010. "Hydrogen and Fuel Cell Development in China: A Review," European Planning Studies, Taylor & Francis Journals, vol. 18(7), pages 1153-1168, July.
    2. Yao, Mingfa & Liu, Haifeng & Feng, Xuan, 2011. "The development of low-carbon vehicles in China," Energy Policy, Elsevier, vol. 39(9), pages 5457-5464, September.
    3. Chen, Yu & Hu, Wei & Feng, Yongzhong & Sweeney, Sandra, 2014. "Status and prospects of rural biogas development in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 679-685.
    4. Kwak, Byeong Sub & Chae, Jinho & Kang, Misook, 2014. "Design of a photochemical water electrolysis system based on a W-typed dye-sensitized serial solar module for high hydrogen production," Applied Energy, Elsevier, vol. 125(C), pages 189-196.
    5. Ou, Xunmin & Zhang, Xiliang & Chang, Shiyan, 2010. "Scenario analysis on alternative fuel/vehicle for China's future road transport: Life-cycle energy demand and GHG emissions," Energy Policy, Elsevier, vol. 38(8), pages 3943-3956, August.
    6. Su, Li-Wang & Li, Xiang-Rong & Sun, Zuo-Yu, 2013. "Flow chart of methanol in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 541-550.
    7. Hang, Leiming & Tu, Meizeng, 2007. "The impacts of energy prices on energy intensity: Evidence from China," Energy Policy, Elsevier, vol. 35(5), pages 2978-2988, May.
    8. Behrens, Arno & Giljum, Stefan & Kovanda, Jan & Niza, Samuel, 2007. "The material basis of the global economy: Worldwide patterns of natural resource extraction and their implications for sustainable resource use policies," Ecological Economics, Elsevier, vol. 64(2), pages 444-453, December.
    9. Ou, Xunmin & Zhang, Xiliang & Chang, Shiyan, 2010. "Alternative fuel buses currently in use in China: Life-cycle fossil energy use, GHG emissions and policy recommendations," Energy Policy, Elsevier, vol. 38(1), pages 406-418, January.
    10. Sulaiman, Erwan & Kosaka, Takashi & Matsui, Nobuyuki, 2014. "Design and analysis of high-power/high-torque density dual excitation switched-flux machine for traction drive in HEVs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 517-524.
    11. Enweremadu, C.C. & Rutto, H.L., 2010. "Combustion, emission and engine performance characteristics of used cooking oil biodiesel--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2863-2873, December.
    12. Wang, Mingyong & Wang, Zhi & Gong, Xuzhong & Guo, Zhancheng, 2014. "The intensification technologies to water electrolysis for hydrogen production – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 573-588.
    13. He, Ling-Yun & Chen, Yu, 2013. "Thou shalt drive electric and hybrid vehicles: Scenario analysis on energy saving and emission mitigation for road transportation sector in China," Transport Policy, Elsevier, vol. 25(C), pages 30-40.
    14. Sharaf, Omar Z. & Orhan, Mehmet F., 2014. "An overview of fuel cell technology: Fundamentals and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 810-853.
    15. Xingping Zhang & Rao Rao & Jian Xie & Yanni Liang, 2014. "The Current Dilemma and Future Path of China’s Electric Vehicles," Sustainability, MDPI, vol. 6(3), pages 1-27, March.
    16. Odgaard, Ole & Delman, Jørgen, 2014. "China׳s energy security and its challenges towards 2035," Energy Policy, Elsevier, vol. 71(C), pages 107-117.
    17. Tang, Xu & Zhang, Baosheng & Feng, Lianyong & Snowden, Simon & Höök, Mikael, 2012. "Net oil exports embodied in China's international trade: An input–output analysis," Energy, Elsevier, vol. 48(1), pages 464-471.
    18. Yuan, Wei & Zhang, Zhaochun & Hu, Jinyi & Zhou, Bo & Tang, Yong, 2014. "Passive vapor-feed direct methanol fuel cell using sintered porous metals to realize high-concentration operation," Applied Energy, Elsevier, vol. 136(C), pages 143-149.
    19. Zhang, ZhongXiang, 2011. "China's energy security, the Malacca dilemma and responses," Energy Policy, Elsevier, vol. 39(12), pages 7612-7615.
    20. Zhang, Bo & Chen, G.Q., 2014. "Methane emissions in China 2007," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 886-902.
    21. Zhang, Bo & Chen, G.Q. & Li, J.S. & Tao, L., 2014. "Methane emissions of energy activities in China 1980–2007," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 11-21.
    22. Xue, Jinlin, 2013. "Combustion characteristics, engine performances and emissions of waste edible oil biodiesel in diesel engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 350-365.
    23. Ren, Jingzheng & Gao, Suzhao & Tan, Shiyu & Dong, Lichun, 2015. "Hydrogen economy in China: Strengths–weaknesses–opportunities–threats analysis and strategies prioritization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1230-1243.
    24. Qiu, Huanguang & Huang, Jikun & Yang, Jun & Rozelle, Scott & Zhang, Yuhua & Zhang, Yahui & Zhang, Yanli, 2010. "Bioethanol development in China and the potential impacts on its agricultural economy," Applied Energy, Elsevier, vol. 87(1), pages 76-83, January.
    25. Saxena, Samveg & Phadke, Amol & Gopal, Anand, 2014. "Understanding the fuel savings potential from deploying hybrid cars in China," Applied Energy, Elsevier, vol. 113(C), pages 1127-1133.
    26. Lin, Boqiang & Xie, Chunping, 2013. "Estimation on oil demand and oil saving potential of China's road transport sector," Energy Policy, Elsevier, vol. 61(C), pages 472-482.
    27. Fu, Jianqin & Liu, Jingping & Wang, Yong & Deng, Banglin & Yang, Yanping & Feng, Renhua & Yang, Jing, 2014. "A comparative study on various turbocharging approaches based on IC engine exhaust gas energy recovery," Applied Energy, Elsevier, vol. 113(C), pages 248-257.
    28. Qiu, Huanguang & Sun, Laixiang & Huang, Jikun & Rozelle, Scott, 2012. "Liquid biofuels in China: Current status, government policies, and future opportunities and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3095-3104.
    29. Isakower, Sean & Wang, Zhongmin, 2014. "A comparison of regular price cycles in gasoline and liquefied petroleum gas," Energy Economics, Elsevier, vol. 45(C), pages 445-454.
    30. Yang, Jun & Liu, Ying & Qin, Ping & Liu, Antung A., 2014. "A review of Beijing׳s vehicle registration lottery: Short-term effects on vehicle growth and fuel consumption," Energy Policy, Elsevier, vol. 75(C), pages 157-166.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tehseen Johar & Chiu-Fan Hsieh, 2023. "Design Challenges in Hydrogen-Fueled Rotary Engine—A Review," Energies, MDPI, vol. 16(2), pages 1-22, January.
    2. Sun, Z.Y. & LIU, Shao-Yan, 2022. "A comparative study on the turbulent explosion characteristics of syngas between CO-enriched and H2-enriched," Energy, Elsevier, vol. 241(C).
    3. Zhang, Guangxu & Wei, Xuezhe & Tang, Xuan & Zhu, Jiangong & Chen, Siqi & Dai, Haifeng, 2021. "Internal short circuit mechanisms, experimental approaches and detection methods of lithium-ion batteries for electric vehicles: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    4. Ji, Zhenya & Huang, Xueliang, 2018. "Plug-in electric vehicle charging infrastructure deployment of China towards 2020: Policies, methodologies, and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 710-727.
    5. Kan, S.Y. & Chen, B. & Wu, X.F. & Chen, Z.M. & Chen, G.Q., 2019. "Natural gas overview for world economy: From primary supply to final demand via global supply chains," Energy Policy, Elsevier, vol. 124(C), pages 215-225.
    6. Fu-Sheng Li & Guo-Xiu Li & Yan-Huan Jiang & Hong-Meng Li & Zuo-Yu Sun, 2017. "Study on the Effect of Flame Instability on the Flame Structural Characteristics of Hydrogen/Air Mixtures Based on the Fast Fourier Transform," Energies, MDPI, vol. 10(5), pages 1-16, May.
    7. Yang, Jinxin & Ji, Changwei & Wang, Shuofeng & Wang, Du & Ma, Zedong & Zhang, Boya, 2018. "Numerical investigation on the mixture formation and combustion processes of a gasoline rotary engine with direct injected hydrogen enrichment," Applied Energy, Elsevier, vol. 224(C), pages 34-41.
    8. Fu-Sheng Li & Guo-Xiu Li & Zuo-Yu Sun, 2017. "Explosion Behaviour of 30% Hydrogen/70% Methane-Blended Fuels in a Weak Turbulent Environment," Energies, MDPI, vol. 10(7), pages 1-15, July.
    9. Zhou, Zhihua & Liu, Yurong & Yuan, Jianjuan & Zuo, Jian & Chen, Guanyi & Xu, Linyu & Rameezdeen, Raufdeen, 2016. "Indoor PM2.5 concentrations in residential buildings during a severely polluted winter: A case study in Tianjin, China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 372-381.
    10. Diao, Qinghua & Sun, Wei & Yuan, Xinmei & Li, Lili & Zheng, Zhi, 2016. "Life-cycle private-cost-based competitiveness analysis of electric vehicles in China considering the intangible cost of traffic policies," Applied Energy, Elsevier, vol. 178(C), pages 567-578.
    11. Zhang, Xiang & Bai, Xue, 2017. "Incentive policies from 2006 to 2016 and new energy vehicle adoption in 2010–2020 in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 24-43.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yao, Mingfa & Liu, Haifeng & Feng, Xuan, 2011. "The development of low-carbon vehicles in China," Energy Policy, Elsevier, vol. 39(9), pages 5457-5464, September.
    2. Ren, Jingzheng & Dong, Liang & Sun, Lu & Evan Goodsite, Michael & Dong, Lichun & Luo, Xiao & Sovacool, Benjamin K., 2015. "“Supply push” or “demand pull?”: Strategic recommendations for the responsible development of biofuel in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 382-392.
    3. Lu, Hongfang & Xu, FengYing & Liu, Hongxiao & Wang, Jun & Campbell, Daniel E. & Ren, Hai, 2019. "Emergy-based analysis of the energy security of China," Energy, Elsevier, vol. 181(C), pages 123-135.
    4. Yuan, Zhiyi & Ou, Xunmin & Peng, Tianduo & Yan, Xiaoyu, 2019. "Life cycle greenhouse gas emissions of multi-pathways natural gas vehicles in china considering methane leakage," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    5. Wu, X.F. & Chen, G.Q., 2018. "Coal use embodied in globalized world economy: From source to sink through supply chain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 978-993.
    6. Yan, Huijie, 2015. "Provincial energy intensity in China: The role of urbanization," Energy Policy, Elsevier, vol. 86(C), pages 635-650.
    7. Hofmann, Jana & Guan, Dabo & Chalvatzis, Konstantinos & Huo, Hong, 2016. "Assessment of electrical vehicles as a successful driver for reducing CO2 emissions in China," Applied Energy, Elsevier, vol. 184(C), pages 995-1003.
    8. Xingping Zhang & Rao Rao & Jian Xie & Yanni Liang, 2014. "The Current Dilemma and Future Path of China’s Electric Vehicles," Sustainability, MDPI, vol. 6(3), pages 1-27, March.
    9. Wang, Hongxia & Fang, Hong & Yu, Xueying & Wang, Ke, 2015. "Development of natural gas vehicles in China: An assessment of enabling factors and barriers," Energy Policy, Elsevier, vol. 85(C), pages 80-93.
    10. Gambhir, Ajay & Tse, Lawrence K.C. & Tong, Danlu & Martinez-Botas, Ricardo, 2015. "Reducing China’s road transport sector CO2 emissions to 2050: Technologies, costs and decomposition analysis," Applied Energy, Elsevier, vol. 157(C), pages 905-917.
    11. Li, Sisi & Khan, Sufyan Ullah & Yao, Yao & Chen, George S. & Zhang, Lin & Salim, Ruhul & Huo, Jiaying, 2022. "Estimating the long-run crude oil demand function of China: Some new evidence and policy options," Energy Policy, Elsevier, vol. 170(C).
    12. AlSabbagh, Maha & Siu, Yim Ling & Guehnemann, Astrid & Barrett, John, 2017. "Integrated approach to the assessment of CO2e-mitigation measures for the road passenger transport sector in Bahrain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 203-215.
    13. Ren, Lei & Zhou, Sheng & Peng, Tianduo & Ou, Xunmin, 2022. "Greenhouse gas life cycle analysis of China's fuel cell medium- and heavy-duty trucks under segmented usage scenarios and vehicle types," Energy, Elsevier, vol. 249(C).
    14. Song, Hongqing & Ou, Xunmin & Yuan, Jiehui & Yu, Mingxu & Wang, Cheng, 2017. "Energy consumption and greenhouse gas emissions of diesel/LNG heavy-duty vehicle fleets in China based on a bottom-up model analysis," Energy, Elsevier, vol. 140(P1), pages 966-978.
    15. Wang, Ke & Zhang, Jianjun & Cai, Bofeng & Yu, Shengmin, 2019. "Emission factors of fugitive methane from underground coal mines in China: Estimation and uncertainty," Applied Energy, Elsevier, vol. 250(C), pages 273-282.
    16. Jiang, Jingjing & Ye, Bin & Liu, Junguo, 2019. "Peak of CO2 emissions in various sectors and provinces of China: Recent progress and avenues for further research," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 813-833.
    17. Azad, A.K. & Rasul, M.G. & Khan, M.M.K. & Sharma, Subhash C. & Mofijur, M. & Bhuiya, M.M.K., 2016. "Prospects, feedstocks and challenges of biodiesel production from beauty leaf oil and castor oil: A nonedible oil sources in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 302-318.
    18. D´Agosto, Márcio de Almeida & Vieira da Silva, Marcelino Aurélio & de Oliveira, Cíntia Machado & Franca, Luíza Santana & da Costa Marques, Luiz Guilherme & Soares Murta, Aurélio Lamare & de Freitas, M, 2015. "Evaluating the potential of the use of biodiesel for power generation in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 807-817.
    19. Xianchun Tan & Yuan Zeng & Baihe Gu & Yi Wang & Baoguang Xu, 2018. "Scenario Analysis of Urban Road Transportation Energy Demand and GHG Emissions in China—A Case Study for Chongqing," Sustainability, MDPI, vol. 10(6), pages 1-32, June.
    20. He, X. & Wang, F. & Wallington, T.J. & Shen, W. & Melaina, M.W. & Kim, H.C. & De Kleine, R. & Lin, T. & Zhang, S. & Keoleian, G.A. & Lu, X. & Wu, Y., 2021. "Well-to-wheels emissions, costs, and feedstock potentials for light-duty hydrogen fuel cell vehicles in China in 2017 and 2030," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:51:y:2015:i:c:p:830-846. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.