IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v47y2015icp462-475.html
   My bibliography  Save this article

Inductively coupled power transfer (ICPT) for electric vehicle charging – A review

Author

Listed:
  • Kalwar, Kafeel Ahmed
  • Aamir, Muhammad
  • Mekhilef, Saad

Abstract

The deficiency in the availability of petroleum products has given rise to the incorporation of electric vehicles (EVs) globally as a substitute for the conventional transportation system. Significant research has been pursued over last two decades in the development of efficient EV charging methods. A preliminary review of few methods developed for wireless charging revealed that ICPT is a promising and convenient method for the wireless charging of EVs. This paper includes the equivalent circuit analysis and characteristics of the ICPT system and focuses on the research progress in respect of the designs for the charging coil, leakage inductance compensation topologies, power level enhancement and misalignment toleration. The improvement in these factors has been essential for the implementation of EV charging. A brief discussion over design process and control of ICPT system has been added. Conclusions have been made on the basis of the information extracted from the literature and some future recommendations are provided.

Suggested Citation

  • Kalwar, Kafeel Ahmed & Aamir, Muhammad & Mekhilef, Saad, 2015. "Inductively coupled power transfer (ICPT) for electric vehicle charging – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 462-475.
  • Handle: RePEc:eee:rensus:v:47:y:2015:i:c:p:462-475
    DOI: 10.1016/j.rser.2015.03.040
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032115001938
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2015.03.040?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Saidur, R. & Abdelaziz, E.A. & Demirbas, A. & Hossain, M.S. & Mekhilef, S., 2011. "A review on biomass as a fuel for boilers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2262-2289, June.
    2. Villa, Juan Luis & Sallán, Jesús & Llombart, Andrés & Sanz, José Fco, 2009. "Design of a high frequency Inductively Coupled Power Transfer system for electric vehicle battery charge," Applied Energy, Elsevier, vol. 86(3), pages 355-363, March.
    3. Hannan, M.A. & Azidin, F.A. & Mohamed, A., 2014. "Hybrid electric vehicles and their challenges: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 135-150.
    4. Atabani, A.E. & Badruddin, Irfan Anjum & Mekhilef, S. & Silitonga, A.S., 2011. "A review on global fuel economy standards, labels and technologies in the transportation sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4586-4610.
    5. Tie, Siang Fui & Tan, Chee Wei, 2013. "A review of energy sources and energy management system in electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 82-102.
    6. Mekhilef, S. & Faramarzi, S.Z. & Saidur, R. & Salam, Zainal, 2013. "The application of solar technologies for sustainable development of agricultural sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 583-594.
    7. Brown, Stephen & Pyke, David & Steenhof, Paul, 2010. "Electric vehicles: The role and importance of standards in an emerging market," Energy Policy, Elsevier, vol. 38(7), pages 3797-3806, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Babatunde Olukotun & Julius Partridge & Richard Bucknall, 2019. "Finite Element Modeling and Analysis of High Power, Low-loss Flux-Pipe Resonant Coils for Static Bidirectional Wireless Power Transfer," Energies, MDPI, vol. 12(18), pages 1-21, September.
    2. Karim Kadem & Mohamed Bensetti & Yann Le Bihan & Eric Labouré & Mustapha Debbou, 2021. "Optimal Coupler Topology for Dynamic Wireless Power Transfer for Electric Vehicle," Energies, MDPI, vol. 14(13), pages 1-18, July.
    3. Li, Lantian & Wang, Zhenpo & Gao, Feng & Wang, Shuo & Deng, Junjun, 2020. "A family of compensation topologies for capacitive power transfer converters for wireless electric vehicle charger," Applied Energy, Elsevier, vol. 260(C).
    4. Ji, Zhenya & Huang, Xueliang, 2018. "Plug-in electric vehicle charging infrastructure deployment of China towards 2020: Policies, methodologies, and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 710-727.
    5. Machura, Philip & Li, Quan, 2019. "A critical review on wireless charging for electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 209-234.
    6. Rubino, Luigi & Capasso, Clemente & Veneri, Ottorino, 2017. "Review on plug-in electric vehicle charging architectures integrated with distributed energy sources for sustainable mobility," Applied Energy, Elsevier, vol. 207(C), pages 438-464.
    7. Niu, Songyan & Xu, Haiqi & Sun, Zhirui & Shao, Z.Y. & Jian, Linni, 2019. "The state-of-the-arts of wireless electric vehicle charging via magnetic resonance: principles, standards and core technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    8. Alicia Triviño-Cabrera & Zhengyu Lin & José A. Aguado, 2018. "Impact of Coil Misalignment in Data Transmission over the Inductive Link of an EV Wireless Charger," Energies, MDPI, vol. 11(3), pages 1-11, March.
    9. Lantao Huang & Jiahao Zou & Yihan Zhou & Yan Hong & Jing Zhang & Zinan Ding, 2019. "Effect of Vertical Metal Plate on Transfer Efficiency of the Wireless Power Transfer System," Energies, MDPI, vol. 12(19), pages 1-15, October.
    10. Sun, Longzhao & Ma, Dianguang & Tang, Houjun, 2018. "A review of recent trends in wireless power transfer technology and its applications in electric vehicle wireless charging," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 490-503.
    11. Soares, Laura & Wang, Hao, 2022. "A study on renewed perspectives of electrified road for wireless power transfer of electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    12. García-Vázquez, Carlos A. & Llorens-Iborra, Francisco & Fernández-Ramírez, Luis M. & Sánchez-Sainz, Higinio & Jurado, Francisco, 2017. "Comparative study of dynamic wireless charging of electric vehicles in motorway, highway and urban stretches," Energy, Elsevier, vol. 137(C), pages 42-57.
    13. Mahmoudzadeh Andwari, Amin & Pesiridis, Apostolos & Rajoo, Srithar & Martinez-Botas, Ricardo & Esfahanian, Vahid, 2017. "A review of Battery Electric Vehicle technology and readiness levels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 414-430.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xian Zhao & Siqi Wang & Xiaoyue Wang, 2018. "Characteristics and Trends of Research on New Energy Vehicle Reliability Based on the Web of Science," Sustainability, MDPI, vol. 10(10), pages 1-25, October.
    2. Das, H.S. & Rahman, M.M. & Li, S. & Tan, C.W., 2020. "Electric vehicles standards, charging infrastructure, and impact on grid integration: A technological review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    3. Mahmoudzadeh Andwari, Amin & Pesiridis, Apostolos & Rajoo, Srithar & Martinez-Botas, Ricardo & Esfahanian, Vahid, 2017. "A review of Battery Electric Vehicle technology and readiness levels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 414-430.
    4. Das, Himadry Shekhar & Tan, Chee Wei & Yatim, A.H.M., 2017. "Fuel cell hybrid electric vehicles: A review on power conditioning units and topologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 268-291.
    5. Zhang, Zhenying & Wang, Jiayu & Feng, Xu & Chang, Li & Chen, Yanhua & Wang, Xingguo, 2018. "The solutions to electric vehicle air conditioning systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 443-463.
    6. Twaha, Ssennoga & Zhu, Jie & Yan, Yuying & Li, Bo, 2016. "A comprehensive review of thermoelectric technology: Materials, applications, modelling and performance improvement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 698-726.
    7. Riba, Jordi-Roger & López-Torres, Carlos & Romeral, Luís & Garcia, Antoni, 2016. "Rare-earth-free propulsion motors for electric vehicles: A technology review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 367-379.
    8. Shaukat, N. & Khan, B. & Ali, S.M. & Mehmood, C.A. & Khan, J. & Farid, U. & Majid, M. & Anwar, S.M. & Jawad, M. & Ullah, Z., 2018. "A survey on electric vehicle transportation within smart grid system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1329-1349.
    9. Alegre, Susana & Míguez, Juan V. & Carpio, José, 2017. "Modelling of electric and parallel-hybrid electric vehicle using Matlab/Simulink environment and planning of charging stations through a geographic information system and genetic algorithms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1020-1027.
    10. Skeete, Jean-Paul, 2017. "Examining the role of policy design and policy interaction in EU automotive emissions performance gaps," Energy Policy, Elsevier, vol. 104(C), pages 373-381.
    11. Ruiz-Romero, Salvador & Colmenar-Santos, Antonio & Mur-Pérez, Francisco & López-Rey, África, 2014. "Integration of distributed generation in the power distribution network: The need for smart grid control systems, communication and equipment for a smart city — Use cases," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 223-234.
    12. Hoque, M.M. & Hannan, M.A. & Mohamed, A. & Ayob, A., 2017. "Battery charge equalization controller in electric vehicle applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1363-1385.
    13. Chen, Feng & Taylor, Nathaniel & Kringos, Nicole, 2015. "Electrification of roads: Opportunities and challenges," Applied Energy, Elsevier, vol. 150(C), pages 109-119.
    14. Ravikiran Vaka & Ritesh Kumar Keshri, 2017. "Review on Contactless Power Transfer for Electric Vehicle Charging," Energies, MDPI, vol. 10(5), pages 1-20, May.
    15. Zhou, Jianhao & Xue, Siwu & Xue, Yuan & Liao, Yuhui & Liu, Jun & Zhao, Wanzhong, 2021. "A novel energy management strategy of hybrid electric vehicle via an improved TD3 deep reinforcement learning," Energy, Elsevier, vol. 224(C).
    16. Zhao, Chen & Zu, Bingfeng & Xu, Yuliang & Wang, Zhen & Zhou, Jianwei & Liu, Lina, 2020. "Design and analysis of an engine-start control strategy for a single-shaft parallel hybrid electric vehicle," Energy, Elsevier, vol. 202(C).
    17. Poullikkas, Andreas, 2015. "Sustainable options for electric vehicle technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1277-1287.
    18. Skeete, Jean-Paul, 2018. "Level 5 autonomy: The new face of disruption in road transport," Technological Forecasting and Social Change, Elsevier, vol. 134(C), pages 22-34.
    19. Babu, Ajay & Ashok, S., 2015. "Improved parallel mild hybrids for urban roads," Applied Energy, Elsevier, vol. 144(C), pages 276-283.
    20. Song, Yulong & Wang, Haidan & Ma, Yuan & Yin, Xiang & Cao, Feng, 2022. "Energetic, economic, environmental investigation of carbon dioxide as the refrigeration alternative in new energy bus/railway vehicles’ air conditioning systems," Applied Energy, Elsevier, vol. 305(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:47:y:2015:i:c:p:462-475. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.