IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v40y2014icp133-142.html
   My bibliography  Save this article

Producing transportation fuels from algae: In search of synergy

Author

Listed:
  • Raslavičius, Laurencas
  • Semenov, Vladimir G.
  • Chernova, Nadezhda I.
  • Keršys, Artūras
  • Kopeyka, Aleksandr K.

Abstract

The study found that promising algae biofuels R&D breakthroughs (hydrothermal liquefaction technology, high-frequency magnetic impulse cavitation reactors, etc.) and industry milestones (technologies of hydrorefining and catalytic selective oxidation among others), in order to move forward, require for implementation of new synergies and further innovations needed to improve economical production of advanced biofuels that are not applicable today. It seems that already viable state-of-the-art findings must be re-examined extensively in all of the different aspects in order to hasten the commercialisation of algal biofuels production in sustainable biorefineries. The same could be said about the feedstock selection for algal biomass production and its cultivation. It is the first step to successful large-scale algae cultivation in new regions of the world. Based on the above mentioned we identified fourteen promising algae species that can successfully grow in various regions of Russia under local climatic conditions. Samples collected during expedition were analysed at Lomonosov Moscow State University. Providing predetermined alternate periods of light and darkness and for temperature control of the different mediums to improve photosynthetic responses we investigated two different microalgal production systems: open ponds of the volume V=500l and closed bioreactors of the volume V=1.0l. Later on, a review on interdisciplinary synergies between biology and technology to open up new avenues of R&D in the field of algae-for-transport was carried out by leading universities of Lithuania, Russia, and Ukraine. In summary, we found that it is already possible to reduce the price of the 3rd and 4th generation biodiesel fuel from algae by applying the synergistic approaches to sustainable energy production highlighted in this paper, and probably some other ones as well.

Suggested Citation

  • Raslavičius, Laurencas & Semenov, Vladimir G. & Chernova, Nadezhda I. & Keršys, Artūras & Kopeyka, Aleksandr K., 2014. "Producing transportation fuels from algae: In search of synergy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 133-142.
  • Handle: RePEc:eee:rensus:v:40:y:2014:i:c:p:133-142
    DOI: 10.1016/j.rser.2014.07.176
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032114006285
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2014.07.176?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mark Huntley & Donald Redalje, 2007. "CO 2 Mitigation and Renewable Oil from Photosynthetic Microbes: A New Appraisal," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 12(4), pages 573-608, May.
    2. Raslavičius, Laurencas & Bazaras, Žilvinas, 2010. "Ecological assessment and economic feasibility to utilize first generation biofuels in cogeneration output cycle – The case of Lithuania," Energy, Elsevier, vol. 35(9), pages 3666-3673.
    3. Sun, Amy & Davis, Ryan & Starbuck, Meghan & Ben-Amotz, Ami & Pate, Ron & Pienkos, Philip T., 2011. "Comparative cost analysis of algal oil production for biofuels," Energy, Elsevier, vol. 36(8), pages 5169-5179.
    4. Guerrero-Lemus, Ricardo & Marrero, Gustavo A. & Puch, Luis A., 2012. "Costs for conventional and renewable fuels and electricity in the worldwide transport sector: A mean–variance portfolio approach," Energy, Elsevier, vol. 44(1), pages 178-188.
    5. Brennan, Liam & Owende, Philip, 2010. "Biofuels from microalgae--A review of technologies for production, processing, and extractions of biofuels and co-products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 557-577, February.
    6. Ridjan, Iva & Mathiesen, Brian Vad & Connolly, David & Duić, Neven, 2013. "The feasibility of synthetic fuels in renewable energy systems," Energy, Elsevier, vol. 57(C), pages 76-84.
    7. Salvi, B.L. & Subramanian, K.A. & Panwar, N.L., 2013. "Alternative fuels for transportation vehicles: A technical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 404-419.
    8. Ajanovic, A. & Haas, R., 2010. "Economic challenges for the future relevance of biofuels in transport in EU countries," Energy, Elsevier, vol. 35(8), pages 3340-3348.
    9. Bahadar, Ali & Bilal Khan, M., 2013. "Progress in energy from microalgae: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 128-148.
    10. Ramos Tercero, Elia Armandina & Sforza, Eleonora & Bertucco, Alberto, 2013. "Energy profitability analysis for microalgal biocrude production," Energy, Elsevier, vol. 60(C), pages 373-379.
    11. Avinash, A. & Subramaniam, D. & Murugesan, A., 2014. "Bio-diesel—A global scenario," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 517-527.
    12. Raslavičius, Laurencas & Keršys, Artūras & Starevičius, Martynas & Sapragonas, Jonas & Bazaras, Žilvinas, 2014. "Biofuels, sustainability and the transport sector in Lithuania," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 328-346.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yin, Zhihong & Chu, Ruoyu & Zhu, Liandong & Li, Shuangxi & Mo, Fan & Hu, Dan & Liu, Chenchen, 2021. "Application of chitosan-based flocculants to harvest microalgal biomass for biofuel production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    2. Gu, X. & Martinez-Fernandez, J.S. & Pang, N. & Fu, X. & Chen, S., 2020. "Recent development of hydrothermal liquefaction for algal biorefinery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    3. Raslavičius, Laurencas & Striūgas, Nerijus & Felneris, Mantas, 2018. "New insights into algae factories of the future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 643-654.
    4. Marcin Dębowski & Marcin Zieliński & Joanna Kazimierowicz & Natalia Kujawska & Szymon Talbierz, 2020. "Microalgae Cultivation Technologies as an Opportunity for Bioenergetic System Development—Advantages and Limitations," Sustainability, MDPI, vol. 12(23), pages 1-37, November.
    5. Mousavi-Avval, Seyed Hashem & Shah, Ajay, 2020. "Techno-economic analysis of pennycress production, harvest and post-harvest logistics for renewable jet fuel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).
    6. Azizi, Kolsoom & Keshavarz Moraveji, Mostafa & Abedini Najafabadi, Hamed, 2018. "A review on bio-fuel production from microalgal biomass by using pyrolysis method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3046-3059.
    7. Kumari, Dolly & Singh, Radhika, 2018. "Pretreatment of lignocellulosic wastes for biofuel production: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 877-891.
    8. Zhang, Bing & Li, Wei & Guo, Yuan & Zhang, Zhiqiang & Shi, Wenxin & Cui, Fuyi & Lens, Piet N.L. & Tay, Joo Hwa, 2020. "Microalgal-bacterial consortia: From interspecies interactions to biotechnological applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    9. Verma, Puneet & Sharma, M.P. & Dwivedi, Gaurav, 2016. "Impact of alcohol on biodiesel production and properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 319-333.
    10. Jambo, Siti Azmah & Abdulla, Rahmath & Mohd Azhar, Siti Hajar & Marbawi, Hartinie & Gansau, Jualang Azlan & Ravindra, Pogaku, 2016. "A review on third generation bioethanol feedstock," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 756-769.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bergthorson, Jeffrey M. & Thomson, Murray J., 2015. "A review of the combustion and emissions properties of advanced transportation biofuels and their impact on existing and future engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1393-1417.
    2. Cheng, Jun & Feng, Jia & Sun, Jing & Huang, Yun & Zhou, Junhu & Cen, Kefa, 2014. "Enhancing the lipid content of the diatom Nitzschia sp. by 60Co-γ irradiation mutation and high-salinity domestication," Energy, Elsevier, vol. 78(C), pages 9-15.
    3. Tamilselvan, P. & Nallusamy, N. & Rajkumar, S., 2017. "A comprehensive review on performance, combustion and emission characteristics of biodiesel fuelled diesel engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1134-1159.
    4. Feng, Huan & Zhang, Bo & He, Zhixia & Wang, Shuang & Salih, Osman & Wang, Qian, 2018. "Study on co-liquefaction of Spirulina and Spartina alterniflora in ethanol-water co-solvent for bio-oil," Energy, Elsevier, vol. 155(C), pages 1093-1101.
    5. Maity, Jyoti Prakash & Hou, Chia-Peng & Majumder, Dip & Bundschuh, Jochen & Kulp, Thomas R. & Chen, Chien-Yen & Chuang, Lu-Te & Nathan Chen, Ching-Nen & Jean, Jiin-Shuh & Yang, Tsui-Chu & Chen, Chien-, 2014. "The production of biofuel and bioelectricity associated with wastewater treatment by green algae," Energy, Elsevier, vol. 78(C), pages 94-103.
    6. López-González, D. & Puig-Gamero, M. & Acién, F.G. & García-Cuadra, F. & Valverde, J.L. & Sanchez-Silva, L., 2015. "Energetic, economic and environmental assessment of the pyrolysis and combustion of microalgae and their oils," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1752-1770.
    7. Bharathiraja, B. & Chakravarthy, M. & Ranjith Kumar, R. & Yogendran, D. & Yuvaraj, D. & Jayamuthunagai, J. & Praveen Kumar, R. & Palani, S., 2015. "Aquatic biomass (algae) as a future feed stock for bio-refineries: A review on cultivation, processing and products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 634-653.
    8. Geada, Pedro & Rodrigues, Rui & Loureiro, Luís & Pereira, Ricardo & Fernandes, Bruno & Teixeira, José A. & Vasconcelos, Vítor & Vicente, António A., 2018. "Electrotechnologies applied to microalgal biotechnology – Applications, techniques and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 656-668.
    9. Samiee-Zafarghandi, Roudabeh & Karimi-Sabet, Javad & Abdoli, Mohammad Ali & Karbassi, Abdolreza, 2018. "Increasing microalgal carbohydrate content for hydrothermal gasification purposes," Renewable Energy, Elsevier, vol. 116(PA), pages 710-719.
    10. Singh, Anoop & Olsen, Stig Irving, 2011. "A critical review of biochemical conversion, sustainability and life cycle assessment of algal biofuels," Applied Energy, Elsevier, vol. 88(10), pages 3548-3555.
    11. Sandra Lage & Zivan Gojkovic & Christiane Funk & Francesco G. Gentili, 2018. "Algal Biomass from Wastewater and Flue Gases as a Source of Bioenergy," Energies, MDPI, vol. 11(3), pages 1-30, March.
    12. Tandon, Puja & Jin, Qiang, 2017. "Microalgae culture enhancement through key microbial approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1089-1099.
    13. Banerjee, Sanjukta & Banerjee, Srijoni & Ghosh, Ananta K. & Das, Debabrata, 2020. "Maneuvering the genetic and metabolic pathway for improving biofuel production in algae: Present status and future prospective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    14. Faried, M. & Samer, M. & Abdelsalam, E. & Yousef, R.S. & Attia, Y.A. & Ali, A.S., 2017. "Biodiesel production from microalgae: Processes, technologies and recent advancements," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 893-913.
    15. Esveidi Montserrat Valdovinos-García & Juan Barajas-Fernández & María de los Ángeles Olán-Acosta & Moisés Abraham Petriz-Prieto & Adriana Guzmán-López & Micael Gerardo Bravo-Sánchez, 2020. "Techno-Economic Study of CO 2 Capture of a Thermoelectric Plant Using Microalgae ( Chlorella vulgaris ) for Production of Feedstock for Bioenergy," Energies, MDPI, vol. 13(2), pages 1-19, January.
    16. Lucas Reijnders, 2013. "Lipid‐based liquid biofuels from autotrophic microalgae: energetic and environmental performance," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 2(1), pages 73-85, January.
    17. Piloto-Rodríguez, Ramón & Sánchez-Borroto, Yisel & Melo-Espinosa, Eliezer Ahmed & Verhelst, Sebastian, 2017. "Assessment of diesel engine performance when fueled with biodiesel from algae and microalgae: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 833-842.
    18. Taylor, Benjamin & Xiao, Ning & Sikorski, Janusz & Yong, Minloon & Harris, Tom & Helme, Tim & Smallbone, Andrew & Bhave, Amit & Kraft, Markus, 2013. "Techno-economic assessment of carbon-negative algal biodiesel for transport solutions," Applied Energy, Elsevier, vol. 106(C), pages 262-274.
    19. Katarzyna, Ledwoch & Sai, Gu & Singh, Oinam Avijeet, 2015. "Non-enclosure methods for non-suspended microalgae cultivation: literature review and research needs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1418-1427.
    20. Kumar, Kanhaiya & Mishra, Sanjiv K. & Shrivastav, Anupama & Park, Min S. & Yang, Ji-Won, 2015. "Recent trends in the mass cultivation of algae in raceway ponds," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 875-885.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:40:y:2014:i:c:p:133-142. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.