IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v116y2018ipap710-719.html
   My bibliography  Save this article

Increasing microalgal carbohydrate content for hydrothermal gasification purposes

Author

Listed:
  • Samiee-Zafarghandi, Roudabeh
  • Karimi-Sabet, Javad
  • Abdoli, Mohammad Ali
  • Karbassi, Abdolreza

Abstract

This research examines the growth of Chlorella sp. microalgae under nutrient limitation (10–200 mg NaNO3 L−1 and 10–70 mg K2HPO4 L−1) and different light intensities (60–450 μmol photons m−2 s−1) for achieving maximum carbohydrate content and biomass productivity using Response Surface Methodology (RSM) technique. According to the results, nutrition limitation had considerable effect on carbohydrate accumulation especially phosphorus concentrations; as in constant light intensities, maximum carbohydrate content was obtained in minimum concentration of K2HPO4. Under favorable circumstances; i.e. K2HPO4 = 10 mg L−1, NaNO3 = 105 mg L−1, and light intensity = 255 μmol photons m−2 s−1 the highest carbohydrate content by 60.9% was achieved. Moreover, Supercritical Water Gasification (SCWG) of carbohydrate enriched microalgal biomass is able to produce much more hydrogen gas in comparison to the basic microalgal biomass. In addition, a 1.85 times increase in amount of produced gas is appeared as a result of a change in biochemical composition of the microalgal biomass.

Suggested Citation

  • Samiee-Zafarghandi, Roudabeh & Karimi-Sabet, Javad & Abdoli, Mohammad Ali & Karbassi, Abdolreza, 2018. "Increasing microalgal carbohydrate content for hydrothermal gasification purposes," Renewable Energy, Elsevier, vol. 116(PA), pages 710-719.
  • Handle: RePEc:eee:renene:v:116:y:2018:i:pa:p:710-719
    DOI: 10.1016/j.renene.2017.10.020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148117309825
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2017.10.020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Taher, Hanifa & Al-Zuhair, Sulaiman & Al-Marzouqi, Ali & Haik, Yousef & Farid, Mohammed, 2015. "Growth of microalgae using CO2 enriched air for biodiesel production in supercritical CO2," Renewable Energy, Elsevier, vol. 82(C), pages 61-70.
    2. Brennan, Liam & Owende, Philip, 2010. "Biofuels from microalgae--A review of technologies for production, processing, and extractions of biofuels and co-products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 557-577, February.
    3. Anselm Eisentraut, 2010. "Sustainable Production of Second-Generation Biofuels: Potential and Perspectives in Major Economies and Developing Countries," IEA Energy Papers 2010/1, OECD Publishing.
    4. Bahadar, Ali & Bilal Khan, M., 2013. "Progress in energy from microalgae: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 128-148.
    5. Dragone, Giuliano & Fernandes, Bruno D. & Abreu, Ana P. & Vicente, António A. & Teixeira, José A., 2011. "Nutrient limitation as a strategy for increasing starch accumulation in microalgae," Applied Energy, Elsevier, vol. 88(10), pages 3331-3335.
    6. Singh, Jasvinder & Gu, Sai, 2010. "Commercialization potential of microalgae for biofuels production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2596-2610, December.
    7. Guo, Y. & Wang, S.Z. & Xu, D.H. & Gong, Y.M. & Ma, H.H. & Tang, X.Y., 2010. "Review of catalytic supercritical water gasification for hydrogen production from biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 334-343, January.
    8. Suali, Emma & Sarbatly, Rosalam, 2012. "Conversion of microalgae to biofuel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 4316-4342.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hu, Yulin & Gong, Mengyue & Xing, Xuelian & Wang, Haoyu & Zeng, Yimin & Xu, Chunbao Charles, 2020. "Supercritical water gasification of biomass model compounds: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    2. Suparmaniam, Uganeeswary & Lam, Man Kee & Uemura, Yoshimitsu & Lim, Jun Wei & Lee, Keat Teong & Shuit, Siew Hoong, 2019. "Insights into the microalgae cultivation technology and harvesting process for biofuel production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    3. Samiee-Zafarghandi, Roudabeh & Karimi-Sabet, Javad & Abdoli, Mohammad Ali & Karbassi, Abdolreza, 2018. "Supercritical water gasification of microalga Chlorella PTCC 6010 for hydrogen production: Box-Behnken optimization and evaluating catalytic effect of MnO2/SiO2 and NiO/SiO2," Renewable Energy, Elsevier, vol. 126(C), pages 189-201.
    4. Fozer, Daniel & Kiss, Bernadett & Lorincz, Laszlo & Szekely, Edit & Mizsey, Peter & Nemeth, Aron, 2019. "Improvement of microalgae biomass productivity and subsequent biogas yield of hydrothermal gasification via optimization of illumination," Renewable Energy, Elsevier, vol. 138(C), pages 1262-1272.
    5. Arkadiusz Piwowar & Joanna Harasym, 2020. "The Importance and Prospects of the Use of Algae in Agribusiness," Sustainability, MDPI, vol. 12(14), pages 1-13, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Samiee-Zafarghandi, Roudabeh & Karimi-Sabet, Javad & Abdoli, Mohammad Ali & Karbassi, Abdolreza, 2018. "Supercritical water gasification of microalga Chlorella PTCC 6010 for hydrogen production: Box-Behnken optimization and evaluating catalytic effect of MnO2/SiO2 and NiO/SiO2," Renewable Energy, Elsevier, vol. 126(C), pages 189-201.
    2. Cheah, Wai Yan & Ling, Tau Chuan & Show, Pau Loke & Juan, Joon Ching & Chang, Jo-Shu & Lee, Duu-Jong, 2016. "Cultivation in wastewaters for energy: A microalgae platform," Applied Energy, Elsevier, vol. 179(C), pages 609-625.
    3. Raheem, Abdul & Wan Azlina, W.A.K.G. & Taufiq Yap, Y.H. & Danquah, Michael K. & Harun, Razif, 2015. "Thermochemical conversion of microalgal biomass for biofuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 990-999.
    4. Bergthorson, Jeffrey M. & Thomson, Murray J., 2015. "A review of the combustion and emissions properties of advanced transportation biofuels and their impact on existing and future engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1393-1417.
    5. Goh, Brandon Han Hoe & Ong, Hwai Chyuan & Cheah, Mei Yee & Chen, Wei-Hsin & Yu, Kai Ling & Mahlia, Teuku Meurah Indra, 2019. "Sustainability of direct biodiesel synthesis from microalgae biomass: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 59-74.
    6. Milano, Jassinnee & Ong, Hwai Chyuan & Masjuki, H.H. & Chong, W.T. & Lam, Man Kee & Loh, Ping Kwan & Vellayan, Viknes, 2016. "Microalgae biofuels as an alternative to fossil fuel for power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 180-197.
    7. Ankita Juneja & Ruben Michael Ceballos & Ganti S. Murthy, 2013. "Effects of Environmental Factors and Nutrient Availability on the Biochemical Composition of Algae for Biofuels Production: A Review," Energies, MDPI, vol. 6(9), pages 1-32, September.
    8. Ghorbani, Afshin & Rahimpour, Hamid Reza & Ghasemi, Younes & Zoughi, Somayeh & Rahimpour, Mohammad Reza, 2014. "A Review of Carbon Capture and Sequestration in Iran: Microalgal Biofixation Potential in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 73-100.
    9. Zhao, Bingtao & Su, Yaxin, 2014. "Process effect of microalgal-carbon dioxide fixation and biomass production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 121-132.
    10. Safi, Carl & Zebib, Bachar & Merah, Othmane & Pontalier, Pierre-Yves & Vaca-Garcia, Carlos, 2014. "Morphology, composition, production, processing and applications of Chlorella vulgaris: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 265-278.
    11. Lim, Jackson Hwa Keen & Gan, Yong Yang & Ong, Hwai Chyuan & Lau, Beng Fye & Chen, Wei-Hsin & Chong, Cheng Tung & Ling, Tau Chuan & Klemeš, Jiří Jaromír, 2021. "Utilization of microalgae for bio-jet fuel production in the aviation sector: Challenges and perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    12. Locatelli, Giorgio & Boarin, Sara & Pellegrino, Francesco & Ricotti, Marco E., 2015. "Load following with Small Modular Reactors (SMR): A real options analysis," Energy, Elsevier, vol. 80(C), pages 41-54.
    13. Maity, Jyoti Prakash & Bundschuh, Jochen & Chen, Chien-Yen & Bhattacharya, Prosun, 2014. "Microalgae for third generation biofuel production, mitigation of greenhouse gas emissions and wastewater treatment: Present and future perspectives – A mini review," Energy, Elsevier, vol. 78(C), pages 104-113.
    14. Feng, Huan & Zhang, Bo & He, Zhixia & Wang, Shuang & Salih, Osman & Wang, Qian, 2018. "Study on co-liquefaction of Spirulina and Spartina alterniflora in ethanol-water co-solvent for bio-oil," Energy, Elsevier, vol. 155(C), pages 1093-1101.
    15. Maity, Jyoti Prakash & Hou, Chia-Peng & Majumder, Dip & Bundschuh, Jochen & Kulp, Thomas R. & Chen, Chien-Yen & Chuang, Lu-Te & Nathan Chen, Ching-Nen & Jean, Jiin-Shuh & Yang, Tsui-Chu & Chen, Chien-, 2014. "The production of biofuel and bioelectricity associated with wastewater treatment by green algae," Energy, Elsevier, vol. 78(C), pages 94-103.
    16. López-González, D. & Puig-Gamero, M. & Acién, F.G. & García-Cuadra, F. & Valverde, J.L. & Sanchez-Silva, L., 2015. "Energetic, economic and environmental assessment of the pyrolysis and combustion of microalgae and their oils," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1752-1770.
    17. Geada, Pedro & Rodrigues, Rui & Loureiro, Luís & Pereira, Ricardo & Fernandes, Bruno & Teixeira, José A. & Vasconcelos, Vítor & Vicente, António A., 2018. "Electrotechnologies applied to microalgal biotechnology – Applications, techniques and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 656-668.
    18. Maity, Sunil K., 2015. "Opportunities, recent trends and challenges of integrated biorefinery: Part II," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1446-1466.
    19. Juan Félix González & Teresa Belén Cuello & Antonio José Calderón & Manuel Calderón & Jerónimo González & Diego Carmona, 2021. "Cultivation of Autochthonous Microalgae for Biomass Feedstock: Growth Curves and Biomass Characterization for Their Use in Biorefinery Products," Energies, MDPI, vol. 14(15), pages 1-21, July.
    20. Rawat, I. & Ranjith Kumar, R. & Mutanda, T. & Bux, F., 2013. "Biodiesel from microalgae: A critical evaluation from laboratory to large scale production," Applied Energy, Elsevier, vol. 103(C), pages 444-467.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:116:y:2018:i:pa:p:710-719. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.