IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v16y2012i6p4316-4342.html
   My bibliography  Save this article

Conversion of microalgae to biofuel

Author

Listed:
  • Suali, Emma
  • Sarbatly, Rosalam

Abstract

This paper primarily presents an overall review of the use of microalgae as a biofuel feedstock. Among the microalgae that have potential as biofuel feedstock, Chlorella, specifically, was thoroughly discussed because of its ability to adapt both to heterotrophic and phototrophic culture conditions. The lipid content and biomass productivity of microalgae can be up to 80% and 7.3g/l/d based on the dried weight of biomass, respectively, making microalgae an ideal candidate as a biofuel feedstock. The set-up of the system and the biomass productivity of microalgae cultivated in an open pond and a photobioreactor were also compared in this work. The effect of the culture condition is discussed based on the two-stage culture period. The issues that were discussed include the light condition and the CO2, DO and N supply. The microalgal productivities under heterotrophic and phototrophic culture conditions were also compared and highlighted in this work. The harvesting process and type of flocculants used to aid the harvesting were highlighted by considering the final yield of biomass. A new idea regarding how to harvest microalgae based on positive and negative charges was also proposed in this work. The extraction methods and solvents discussed were primarily for the conventional and newly invented techniques. Conversion processes such as transesterification and thermochemical processes were discussed, sketched in figures and summarized in tables. The cost–benefit analysis of heterotrophic culture and the cultivation system was highlighted at the end of this work. Other benefits of microalgae are also mentioned in this work to give further support for the use of microalgae as a feedstock for biofuel production.

Suggested Citation

  • Suali, Emma & Sarbatly, Rosalam, 2012. "Conversion of microalgae to biofuel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 4316-4342.
  • Handle: RePEc:eee:rensus:v:16:y:2012:i:6:p:4316-4342
    DOI: 10.1016/j.rser.2012.03.047
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032112002304
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2012.03.047?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lei, Zhiping & Liu, Muxin & Gao, Lijuan & Shui, Hengfu & Wang, Zhicai & Ren, Shibiao, 2011. "Liquefaction of Shengli lignite with methanol and CaO under low pressure," Energy, Elsevier, vol. 36(5), pages 3058-3062.
    2. Sun, Amy & Davis, Ryan & Starbuck, Meghan & Ben-Amotz, Ami & Pate, Ron & Pienkos, Philip T., 2011. "Comparative cost analysis of algal oil production for biofuels," Energy, Elsevier, vol. 36(8), pages 5169-5179.
    3. Mata, Teresa M. & Martins, António A. & Caetano, Nidia. S., 2010. "Microalgae for biodiesel production and other applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 217-232, January.
    4. Gao, Chunfang & Zhai, Yan & Ding, Yi & Wu, Qingyu, 2010. "Application of sweet sorghum for biodiesel production by heterotrophic microalga Chlorella protothecoides," Applied Energy, Elsevier, vol. 87(3), pages 756-761, March.
    5. Harun, Razif & Jason, W.S.Y. & Cherrington, Tamara & Danquah, Michael K., 2011. "Exploring alkaline pre-treatment of microalgal biomass for bioethanol production," Applied Energy, Elsevier, vol. 88(10), pages 3464-3467.
    6. Packer, Mike, 2009. "Algal capture of carbon dioxide; biomass generation as a tool for greenhouse gas mitigation with reference to New Zealand energy strategy and policy," Energy Policy, Elsevier, vol. 37(9), pages 3428-3437, September.
    7. Dragone, Giuliano & Fernandes, Bruno D. & Abreu, Ana P. & Vicente, António A. & Teixeira, José A., 2011. "Nutrient limitation as a strategy for increasing starch accumulation in microalgae," Applied Energy, Elsevier, vol. 88(10), pages 3331-3335.
    8. Cardona Alzate, C.A. & Sánchez Toro, O.J., 2006. "Energy consumption analysis of integrated flowsheets for production of fuel ethanol from lignocellulosic biomass," Energy, Elsevier, vol. 31(13), pages 2447-2459.
    9. Prins, Mark J. & Ptasinski, Krzysztof J. & Janssen, Frans J.J.G., 2006. "More efficient biomass gasification via torrefaction," Energy, Elsevier, vol. 31(15), pages 3458-3470.
    10. Shuping, Zou & Yulong, Wu & Mingde, Yang & Kaleem, Imdad & Chun, Li & Tong, Junmao, 2010. "Production and characterization of bio-oil from hydrothermal liquefaction of microalgae Dunaliella tertiolecta cake," Energy, Elsevier, vol. 35(12), pages 5406-5411.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maity, Jyoti Prakash & Bundschuh, Jochen & Chen, Chien-Yen & Bhattacharya, Prosun, 2014. "Microalgae for third generation biofuel production, mitigation of greenhouse gas emissions and wastewater treatment: Present and future perspectives – A mini review," Energy, Elsevier, vol. 78(C), pages 104-113.
    2. Daroch, Maurycy & Geng, Shu & Wang, Guangyi, 2013. "Recent advances in liquid biofuel production from algal feedstocks," Applied Energy, Elsevier, vol. 102(C), pages 1371-1381.
    3. Haik, Yousef & Selim, Mohamed Y.E. & Abdulrehman, Tahir, 2011. "Combustion of algae oil methyl ester in an indirect injection diesel engine," Energy, Elsevier, vol. 36(3), pages 1827-1835.
    4. Raheem, Abdul & Wan Azlina, W.A.K.G. & Taufiq Yap, Y.H. & Danquah, Michael K. & Harun, Razif, 2015. "Thermochemical conversion of microalgal biomass for biofuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 990-999.
    5. Li, Fanghua & Srivatsa, Srikanth Chakravartula & Bhattacharya, Sankar, 2019. "A review on catalytic pyrolysis of microalgae to high-quality bio-oil with low oxygeneous and nitrogenous compounds," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 481-497.
    6. Peralta-Ruiz, Y. & González-Delgado, A.-D. & Kafarov, V., 2013. "Evaluation of alternatives for microalgae oil extraction based on exergy analysis," Applied Energy, Elsevier, vol. 101(C), pages 226-236.
    7. Maity, Jyoti Prakash & Hou, Chia-Peng & Majumder, Dip & Bundschuh, Jochen & Kulp, Thomas R. & Chen, Chien-Yen & Chuang, Lu-Te & Nathan Chen, Ching-Nen & Jean, Jiin-Shuh & Yang, Tsui-Chu & Chen, Chien-, 2014. "The production of biofuel and bioelectricity associated with wastewater treatment by green algae," Energy, Elsevier, vol. 78(C), pages 94-103.
    8. Bharathiraja, B. & Chakravarthy, M. & Ranjith Kumar, R. & Yogendran, D. & Yuvaraj, D. & Jayamuthunagai, J. & Praveen Kumar, R. & Palani, S., 2015. "Aquatic biomass (algae) as a future feed stock for bio-refineries: A review on cultivation, processing and products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 634-653.
    9. Thomassen, Gwenny & Van Dael, Miet & Lemmens, Bert & Van Passel, Steven, 2017. "A review of the sustainability of algal-based biorefineries: Towards an integrated assessment framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 876-887.
    10. Beata Brzychczyk & Tomasz Hebda & Norbert Pedryc, 2020. "The Influence of Artificial Lighting Systems on the Cultivation of Algae: The Example of Chlorella vulgaris," Energies, MDPI, vol. 13(22), pages 1-14, November.
    11. Farrelly, Damien J. & Everard, Colm D. & Fagan, Colette C. & McDonnell, Kevin P., 2013. "Carbon sequestration and the role of biological carbon mitigation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 712-727.
    12. Chaudry, Sofia & Bahri, Parisa A. & Moheimani, Navid R., 2015. "Pathways of processing of wet microalgae for liquid fuel production: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1240-1250.
    13. Singh, Anoop & Olsen, Stig Irving, 2011. "A critical review of biochemical conversion, sustainability and life cycle assessment of algal biofuels," Applied Energy, Elsevier, vol. 88(10), pages 3548-3555.
    14. Balat, Mustafa & Balat, Havva, 2010. "Progress in biodiesel processing," Applied Energy, Elsevier, vol. 87(6), pages 1815-1835, June.
    15. Marwa G. Saad & Noura S. Dosoky & Mohamed S. Zoromba & Hesham M. Shafik, 2019. "Algal Biofuels: Current Status and Key Challenges," Energies, MDPI, vol. 12(10), pages 1-22, May.
    16. Chen, Jiaxin & Li, Ji & Dong, Wenyi & Zhang, Xiaolei & Tyagi, Rajeshwar D. & Drogui, Patrick & Surampalli, Rao Y., 2018. "The potential of microalgae in biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 336-346.
    17. Choi, Hong Il & Sung, Young Joon & Hong, Min Eui & Han, Jonghee & Min, Byoung Koun & Sim, Sang Jun, 2022. "Reconsidering the potential of direct microalgal biomass utilization as end-products: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    18. Lucas Reijnders, 2013. "Lipid‐based liquid biofuels from autotrophic microalgae: energetic and environmental performance," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 2(1), pages 73-85, January.
    19. Konur, Ozcan, 2011. "The scientometric evaluation of the research on the algae and bio-energy," Applied Energy, Elsevier, vol. 88(10), pages 3532-3540.
    20. Umberto Lucia & Giulia Grisolia, 2018. "Cyanobacteria and Microalgae : Thermoeconomic Considerations in Biofuel Production," Energies, MDPI, vol. 11(1), pages 1-16, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:16:y:2012:i:6:p:4316-4342. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.