IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v180y2023ics1364032123001478.html
   My bibliography  Save this article

Decarbonizing the cement and concrete industry: A systematic review of socio-technical systems, technological innovations, and policy options

Author

Listed:
  • Griffiths, Steve
  • Sovacool, Benjamin K.
  • Furszyfer Del Rio, Dylan D.
  • Foley, Aoife M.
  • Bazilian, Morgan D.
  • Kim, Jinsoo
  • Uratani, Joao M.

Abstract

Concrete is the most highly used construction material globally. This is largely due to its durability, versatility and manufacture from inexpensive and readily available materials. Although concrete has become an essential and ubiquitous construction material for modern society, its use has significant environmental impacts. The full cement and concrete lifecycle, from production to final disposal, accounts for nearly 10% of global energy-related CO2 emissions with the majority of these emissions produced from cement, which is the binding material that holds concrete together. The cement and concrete industry (CCI), which is integral to global infrastructure development, is therefore confronted with a growing need to decarbonize its operations and products, as well as to support the decarbonization of associated end-user sectors. This paper provides a systematic and critical review of more than 800 studies to highlight ways in which the CCI can decarbonize. A socio-technical perspective is used to understand the full range of industrial and economic activities where a decarbonized paradigm for cement and concrete production is relevant. This perspective is further used to assess key technical, economic, social and political factors that will drive a net-zero transition in the CCI over the long term.

Suggested Citation

  • Griffiths, Steve & Sovacool, Benjamin K. & Furszyfer Del Rio, Dylan D. & Foley, Aoife M. & Bazilian, Morgan D. & Kim, Jinsoo & Uratani, Joao M., 2023. "Decarbonizing the cement and concrete industry: A systematic review of socio-technical systems, technological innovations, and policy options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 180(C).
  • Handle: RePEc:eee:rensus:v:180:y:2023:i:c:s1364032123001478
    DOI: 10.1016/j.rser.2023.113291
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032123001478
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2023.113291?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xiao-Yong Wang, 2019. "Effect of Carbon Pricing on Optimal Mix Design of Sustainable High-Strength Concrete," Sustainability, MDPI, vol. 11(20), pages 1-17, October.
    2. Mirzakhani, M. Amin & Tahouni, Nassim & Panjeshahi, M. Hassan, 2017. "Energy benchmarking of cement industry, based on Process Integration concepts," Energy, Elsevier, vol. 130(C), pages 382-391.
    3. Ida Karlsson & Johan Rootzén & Alla Toktarova & Mikael Odenberger & Filip Johnsson & Lisa Göransson, 2020. "Roadmap for Decarbonization of the Building and Construction Industry—A Supply Chain Analysis Including Primary Production of Steel and Cement," Energies, MDPI, vol. 13(16), pages 1-40, August.
    4. Meredith Fowlie & Mar Reguant & Stephen P. Ryan, 2016. "Market-Based Emissions Regulation and Industry Dynamics," Journal of Political Economy, University of Chicago Press, vol. 124(1), pages 249-302.
    5. Furszyfer Del Rio, Dylan D. & Sovacool, Benjamin K. & Foley, Aoife M. & Griffiths, Steve & Bazilian, Morgan & Kim, Jinsoo & Rooney, David, 2022. "Decarbonizing the ceramics industry: A systematic and critical review of policy options, developments and sociotechnical systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    6. Moumin, Gkiokchan & Ryssel, Maximilian & Zhao, Li & Markewitz, Peter & Sattler, Christian & Robinius, Martin & Stolten, Detlef, 2020. "CO2 emission reduction in the cement industry by using a solar calciner," Renewable Energy, Elsevier, vol. 145(C), pages 1578-1596.
    7. Sorrell, Steve, 2007. "Improving the evidence base for energy policy: The role of systematic reviews," Energy Policy, Elsevier, vol. 35(3), pages 1858-1871, March.
    8. Emmanuel Hache & Marine Simoën & Gondia Sokhna Seck & Clément Bonnet & Aymen Jabberi, 2020. "The impact of future power generation on cement demand: An international and regional assessment based on climate scenarios," International Economics, CEPII research center, issue 163, pages 114-133.
    9. Eugene Mohareb & Christopher Kennedy, 2012. "Gross Direct and Embodied Carbon Sinks for Urban Inventories," Journal of Industrial Ecology, Yale University, vol. 16(3), pages 302-316, June.
    10. Schakel, Wouter & Hung, Christine Roxanne & Tokheim, Lars-Andre & Strømman, Anders Hammer & Worrell, Ernst & Ramírez, Andrea, 2018. "Impact of fuel selection on the environmental performance of post-combustion calcium looping applied to a cement plant," Applied Energy, Elsevier, vol. 210(C), pages 75-87.
    11. Amandine Denis-Ryan & Chris Bataille & Frank Jotzo, 2016. "Managing carbon-intensive materials in a decarbonizing world without a global price on carbon," Climate Policy, Taylor & Francis Journals, vol. 16(sup1), pages 110-128, June.
    12. Zhi Cao & Rupert J. Myers & Richard C. Lupton & Huabo Duan & Romain Sacchi & Nan Zhou & T. Reed Miller & Jonathan M. Cullen & Quansheng Ge & Gang Liu, 2020. "The sponge effect and carbon emission mitigation potentials of the global cement cycle," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    13. Nami, Hossein & Anvari-Moghaddam, Amjad, 2020. "Small-scale CCHP systems for waste heat recovery from cement plants: Thermodynamic, sustainability and economic implications," Energy, Elsevier, vol. 192(C).
    14. Marta G. Plaza & Sergio Martínez & Fernando Rubiera, 2020. "CO 2 Capture, Use, and Storage in the Cement Industry: State of the Art and Expectations," Energies, MDPI, vol. 13(21), pages 1-28, October.
    15. Ali, M.B. & Saidur, R. & Hossain, M.S., 2011. "A review on emission analysis in cement industries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2252-2261, June.
    16. Peter Markewitz & Li Zhao & Maximilian Ryssel & Gkiokchan Moumin & Yuan Wang & Christian Sattler & Martin Robinius & Detlef Stolten, 2019. "Carbon Capture for CO 2 Emission Reduction in the Cement Industry in Germany," Energies, MDPI, vol. 12(12), pages 1-25, June.
    17. Misato Sato & Karsten Neuhoff & Verena Graichen & Katja Schumacher & Felix Matthes, 2015. "Sectors Under Scrutiny: Evaluation of Indicators to Assess the Risk of Carbon Leakage in the UK and Germany," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 60(1), pages 99-124, January.
    18. McLaughlin, Hope & Littlefield, Anna A. & Menefee, Maia & Kinzer, Austin & Hull, Tobias & Sovacool, Benjamin K. & Bazilian, Morgan D. & Kim, Jinsoo & Griffiths, Steven, 2023. "Carbon capture utilization and storage in review: Sociotechnical implications for a carbon reliant world," Renewable and Sustainable Energy Reviews, Elsevier, vol. 177(C).
    19. Granados, David A. & Chejne, Farid & Mejía, Juan M. & Gómez, Carlos A. & Berrío, Ariel & Jurado, William J., 2014. "Effect of flue gas recirculation during oxy-fuel combustion in a rotary cement kiln," Energy, Elsevier, vol. 64(C), pages 615-625.
    20. Ana Rosado-Cubero & Angel Martínez-Soto, 2020. "A history of the sugar and cement cartels in twentieth-century Spain," Scandinavian Economic History Review, Taylor & Francis Journals, vol. 68(3), pages 270-288, September.
    21. Cabeza, Luisa F. & Barreneche, Camila & Miró, Laia & Morera, Josep M. & Bartolí, Esther & Inés Fernández, A., 2013. "Low carbon and low embodied energy materials in buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 536-542.
    22. Talaei, Alireza & Pier, David & Iyer, Aishwarya V. & Ahiduzzaman, Md & Kumar, Amit, 2019. "Assessment of long-term energy efficiency improvement and greenhouse gas emissions mitigation options for the cement industry," Energy, Elsevier, vol. 170(C), pages 1051-1066.
    23. Hasanbeigi, Ali & Price, Lynn & Lu, Hongyou & Lan, Wang, 2010. "Analysis of energy-efficiency opportunities for the cement industry in Shandong Province, China: A case study of 16 cement plants," Energy, Elsevier, vol. 35(8), pages 3461-3473.
    24. Galina Churkina & Alan Organschi & Christopher P. O. Reyer & Andrew Ruff & Kira Vinke & Zhu Liu & Barbara K. Reck & T. E. Graedel & Hans Joachim Schellnhuber, 2020. "Buildings as a global carbon sink," Nature Sustainability, Nature, vol. 3(4), pages 269-276, April.
    25. Shen, Weiguo & Cao, Liu & Li, Qiu & Zhang, Wensheng & Wang, Guiming & Li, Chaochao, 2015. "Quantifying CO2 emissions from China’s cement industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1004-1012.
    26. Worrell, Ernst & Martin, Nathan & Price, Lynn, 2000. "Potentials for energy efficiency improvement in the US cement industry," Energy, Elsevier, vol. 25(12), pages 1189-1214.
    27. Abdelaziz Meddah & Mohamed Aziz Chikouche & Mohamed Yahia & Moussa Deghfel & Miloud Beddar, 2022. "The Efficiency of Recycling Expired Cement Waste in Cement Manufacturing: a Sustainable Construction Material," Circular Economy and Sustainability,, Springer.
    28. Johan Rootzén & Filip Johnsson, 2017. "Managing the costs of CO abatement in the cement industry," Climate Policy, Taylor & Francis Journals, vol. 17(6), pages 781-800, August.
    29. Selim, Tarek & Salem, Ahmed, 2010. "Global Cement Industry: Competitive and Institutional Dimensions," MPRA Paper 24464, University Library of Munich, Germany.
    30. Hashimoto, Shizuka & Fujita, Tsuyoshi & Geng, Yong & Nagasawa, Emiri, 2010. "Realizing CO2 emission reduction through industrial symbiosis: A cement production case study for Kawasaki," Resources, Conservation & Recycling, Elsevier, vol. 54(10), pages 704-710.
    31. Paul Drummond & Paul Ekins, 2017. "Cost-effective decarbonization in the EU: an overview of policy suitability," Climate Policy, Taylor & Francis Journals, vol. 17(0), pages 51-71, June.
    32. Irene Brüske & Elisabeth Thiering & Joachim Heinrich & Katharina Huster & Dennis Nowak, 2013. "Biopersistent Granular Dust and Chronic Obstructive Pulmonary Disease: A Systematic Review and Meta-Analysis," PLOS ONE, Public Library of Science, vol. 8(11), pages 1-1, November.
    33. Hasanbeigi, Ali & Morrow, William & Masanet, Eric & Sathaye, Jayant & Xu, Tengfang, 2013. "Energy efficiency improvement and CO2 emission reduction opportunities in the cement industry in China," Energy Policy, Elsevier, vol. 57(C), pages 287-297.
    34. Furszyfer Del Rio, Dylan D. & Sovacool, Benjamin K. & Foley, Aoife M. & Griffiths, Steve & Bazilian, Morgan & Kim, Jinsoo & Rooney, David, 2022. "Decarbonizing the glass industry: A critical and systematic review of developments, sociotechnical systems and policy options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    35. Zhao Dong & Michael S. Bank & John D. Spengler, 2015. "Assessing Metal Exposures in a Community near a Cement Plant in the Northeast U.S," IJERPH, MDPI, vol. 12(1), pages 1-18, January.
    36. Latifah M. Alsarhan & Alhanouf S. Alayyar & Naif B. Alqahtani & Nezar H. Khdary, 2021. "Circular Carbon Economy (CCE): A Way to Invest CO 2 and Protect the Environment, a Review," Sustainability, MDPI, vol. 13(21), pages 1-25, October.
    37. Furszyfer Del Rio, Dylan D. & Sovacool, Benjamin K. & Griffiths, Steve & Bazilian, Morgan & Kim, Jinsoo & Foley, Aoife M. & Rooney, David, 2022. "Decarbonizing the pulp and paper industry: A critical and systematic review of sociotechnical developments and policy options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    38. Zhang, Hui & Dong, Liang & Li, Huiquan & Fujita, Tsuyoshi & Ohnishi, Satoshi & Tang, Qing, 2013. "Analysis of low-carbon industrial symbiosis technology for carbon mitigation in a Chinese iron/steel industrial park: A case study with carbon flow analysis," Energy Policy, Elsevier, vol. 61(C), pages 1400-1411.
    39. Wesseling, J.H. & Lechtenböhmer, S. & Åhman, M. & Nilsson, L.J. & Worrell, E. & Coenen, L., 2017. "The transition of energy intensive processing industries towards deep decarbonization: Characteristics and implications for future research," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1303-1313.
    40. Kai Hüschelrath & Tobias Veith, 2016. "Cartelization, Cartel Breakdown, and Price Behavior: Evidence from the German Cement Industry," Journal of Industry, Competition and Trade, Springer, vol. 16(1), pages 81-100, March.
    41. Lohwasser, Richard & Madlener, Reinhard, 2013. "Relating R&D and investment policies to CCS market diffusion through two-factor learning," Energy Policy, Elsevier, vol. 52(C), pages 439-452.
    42. Chris Bataille, 2020. "Low and zero emissions in the steel and cement industries: Barriers, technologies and policies," OECD Green Growth Papers 2020/02, OECD Publishing.
    43. Madlool, N.A. & Saidur, R. & Rahim, N.A. & Kamalisarvestani, M., 2013. "An overview of energy savings measures for cement industries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 18-29.
    44. Paltsev, Sergey & Morris, Jennifer & Kheshgi, Haroon & Herzog, Howard, 2021. "Hard-to-Abate Sectors: The role of industrial carbon capture and storage (CCS) in emission mitigation," Applied Energy, Elsevier, vol. 300(C).
    45. Miró, Laia & Gasia, Jaume & Cabeza, Luisa F., 2016. "Thermal energy storage (TES) for industrial waste heat (IWH) recovery: A review," Applied Energy, Elsevier, vol. 179(C), pages 284-301.
    46. Detz, Remko J. & van der Zwaan, Bob, 2019. "Transitioning towards negative CO2 emissions," Energy Policy, Elsevier, vol. 133(C).
    47. Aleluia, J. & Tharakan, P. & Chikkatur, A.P. & Shrimali, G. & Chen, X., 2022. "Accelerating a clean energy transition in Southeast Asia: Role of governments and public policy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    48. Hossain, Syed Raihan & Ahmed, Istiak & Azad, Ferdous S. & Monjurul Hasan, A S M, 2020. "Empirical investigation of energy management practices in cement industries of Bangladesh," Energy, Elsevier, vol. 212(C).
    49. Sovacool, Benjamin K. & Griffiths, Steve & Kim, Jinsoo & Bazilian, Morgan, 2021. "Climate change and industrial F-gases: A critical and systematic review of developments, sociotechnical systems and policy options for reducing synthetic greenhouse gas emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    50. Stefania Osk Gardarsdottir & Edoardo De Lena & Matteo Romano & Simon Roussanaly & Mari Voldsund & José-Francisco Pérez-Calvo & David Berstad & Chao Fu & Rahul Anantharaman & Daniel Sutter & Matteo Gaz, 2019. "Comparison of Technologies for CO 2 Capture from Cement Production—Part 2: Cost Analysis," Energies, MDPI, vol. 12(3), pages 1-20, February.
    51. Xiaoyang Zhong & Mingming Hu & Sebastiaan Deetman & Bernhard Steubing & Hai Xiang Lin & Glenn Aguilar Hernandez & Carina Harpprecht & Chunbo Zhang & Arnold Tukker & Paul Behrens, 2021. "Global greenhouse gas emissions from residential and commercial building materials and mitigation strategies to 2060," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    52. Sovacool, Benjamin K. & Bazilian, Morgan & Griffiths, Steve & Kim, Jinsoo & Foley, Aoife & Rooney, David, 2021. "Decarbonizing the food and beverages industry: A critical and systematic review of developments, sociotechnical systems and policy options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    53. Song, Dan & Yang, Jin & Chen, Bin & Hayat, Tasawar & Alsaedi, Ahmed, 2016. "Life-cycle environmental impact analysis of a typical cement production chain," Applied Energy, Elsevier, vol. 164(C), pages 916-923.
    54. Elisabetta Allevi & Giorgia Oggioni & Rossana Riccardi & Marco Rocco, 2013. "A spatial competitive analysis: the carbon leakage effect on the cement industry under the European Emissions Trading Scheme," Temi di discussione (Economic working papers) 899, Bank of Italy, Economic Research and International Relations Area.
    55. Nathan H. Miller & Matthew Osborne & Gloria Sheu, 2017. "Pass-through in a concentrated industry: empirical evidence and regulatory implications," RAND Journal of Economics, RAND Corporation, vol. 48(1), pages 69-93, March.
    56. Ferrari, S. & Zoghi, M. & Blázquez, T. & Dall’O’, G., 2022. "New Level(s) framework: Assessing the affinity between the main international Green Building Rating Systems and the european scheme," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    57. Maria-Chiara Ferrari & Antonio Amelio & Giuseppe Marino Nardelli & Riccardo Costi, 2021. "Assessment on the Application of Facilitated Transport Membranes in Cement Plants for CO 2 Capture," Energies, MDPI, vol. 14(16), pages 1-15, August.
    58. Carl, Jeremy & Fedor, David, 2016. "Tracking global carbon revenues: A survey of carbon taxes versus cap-and-trade in the real world," Energy Policy, Elsevier, vol. 96(C), pages 50-77.
    59. Lara Jaillon & Chi-Sun Poon, 2010. "Design issues of using prefabrication in Hong Kong building construction," Construction Management and Economics, Taylor & Francis Journals, vol. 28(10), pages 1025-1042.
    60. Yang, F. & Meerman, J.C. & Faaij, A.P.C., 2021. "Carbon capture and biomass in industry: A techno-economic analysis and comparison of negative emission options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marta Skiba & Maria Mrówczyńska & Małgorzata Sztubecka & Alicja Maciejko & Natalia Rzeszowska, 2023. "The European Union’s Energy Policy Efforts Regarding Emission Reduction in Cities—A Method Proposal," Energies, MDPI, vol. 16(17), pages 1-26, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kusuma, Ravi Teja & Hiremath, Rahul B. & Rajesh, Pachimatla & Kumar, Bimlesh & Renukappa, Suresh, 2022. "Sustainable transition towards biomass-based cement industry: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    2. Furszyfer Del Rio, Dylan D. & Sovacool, Benjamin K. & Griffiths, Steve & Bazilian, Morgan & Kim, Jinsoo & Foley, Aoife M. & Rooney, David, 2022. "Decarbonizing the pulp and paper industry: A critical and systematic review of sociotechnical developments and policy options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    3. Golmohamadi, Hessam, 2022. "Demand-side management in industrial sector: A review of heavy industries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    4. McLaughlin, Hope & Littlefield, Anna A. & Menefee, Maia & Kinzer, Austin & Hull, Tobias & Sovacool, Benjamin K. & Bazilian, Morgan D. & Kim, Jinsoo & Griffiths, Steven, 2023. "Carbon capture utilization and storage in review: Sociotechnical implications for a carbon reliant world," Renewable and Sustainable Energy Reviews, Elsevier, vol. 177(C).
    5. Doh Dinga, Christian & Wen, Zongguo, 2021. "Many-objective optimization of energy conservation and emission reduction in China’s cement industry," Applied Energy, Elsevier, vol. 304(C).
    6. Furszyfer Del Rio, Dylan D. & Sovacool, Benjamin K. & Foley, Aoife M. & Griffiths, Steve & Bazilian, Morgan & Kim, Jinsoo & Rooney, David, 2022. "Decarbonizing the ceramics industry: A systematic and critical review of policy options, developments and sociotechnical systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    7. Zhang, Shaohui & Worrell, Ernst & Crijns-Graus, Wina, 2015. "Evaluating co-benefits of energy efficiency and air pollution abatement in China’s cement industry," Applied Energy, Elsevier, vol. 147(C), pages 192-213.
    8. Nhuchhen, Daya R. & Sit, Song P. & Layzell, David B., 2022. "Decarbonization of cement production in a hydrogen economy," Applied Energy, Elsevier, vol. 317(C).
    9. Furszyfer Del Rio, Dylan D. & Sovacool, Benjamin K. & Foley, Aoife M. & Griffiths, Steve & Bazilian, Morgan & Kim, Jinsoo & Rooney, David, 2022. "Decarbonizing the glass industry: A critical and systematic review of developments, sociotechnical systems and policy options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    10. Hechelmann, Ron-Hendrik & Paris, Aaron & Buchenau, Nadja & Ebersold, Felix, 2023. "Decarbonisation strategies for manufacturing: A technical and economic comparison," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    11. Mirzakhani, M. Amin & Tahouni, Nassim & Panjeshahi, M. Hassan, 2017. "Energy benchmarking of cement industry, based on Process Integration concepts," Energy, Elsevier, vol. 130(C), pages 382-391.
    12. Jamshidi, Ali & Kurumisawa, Kiyofumi & Nawa, Toyoharu & Igarashi, Toshifumi, 2016. "Performance of pavements incorporating waste glass: The current state of the art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 211-236.
    13. Huang, Yun-Hsun & Chang, Yi-Lin & Fleiter, Tobias, 2016. "A critical analysis of energy efficiency improvement potentials in Taiwan's cement industry," Energy Policy, Elsevier, vol. 96(C), pages 14-26.
    14. Alessandra Cantini & Leonardo Leoni & Filippo De Carlo & Marcello Salvio & Chiara Martini & Fabrizio Martini, 2021. "Technological Energy Efficiency Improvements in Cement Industries," Sustainability, MDPI, vol. 13(7), pages 1-28, March.
    15. Gao, Tianming & Shen, Lei & Shen, Ming & Liu, Litao & Chen, Fengnan & Gao, Li, 2017. "Evolution and projection of CO2 emissions for China's cement industry from 1980 to 2020," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 522-537.
    16. Dinga, Christian Doh & Wen, Zongguo, 2022. "China's green deal: Can China's cement industry achieve carbon neutral emissions by 2060?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    17. Alessandro Franco & Lorenzo Miserocchi & Daniele Testi, 2023. "Energy Indicators for Enabling Energy Transition in Industry," Energies, MDPI, vol. 16(2), pages 1-18, January.
    18. Junxiao Wei & Kuang Cen, 2019. "A preliminary calculation of cement carbon dioxide in China from 1949 to 2050," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 24(8), pages 1343-1362, December.
    19. Ahmed M. E. Khalil & Anne P. M. Velenturf & Masoud Ahmadinia & Shaowei Zhang, 2023. "Context Analysis for Transformative Change in the Ceramic Industry," Sustainability, MDPI, vol. 15(16), pages 1-25, August.
    20. Chen, Hao & Kang, Jia-Ning & Liao, Hua & Tang, Bao-Jun & Wei, Yi-Ming, 2017. "Costs and potentials of energy conservation in China's coal-fired power industry: A bottom-up approach considering price uncertainties," Energy Policy, Elsevier, vol. 104(C), pages 23-32.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:180:y:2023:i:c:s1364032123001478. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.