IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v155y2022ics1364032121011527.html
   My bibliography  Save this article

Decarbonizing the glass industry: A critical and systematic review of developments, sociotechnical systems and policy options

Author

Listed:
  • Furszyfer Del Rio, Dylan D.
  • Sovacool, Benjamin K.
  • Foley, Aoife M.
  • Griffiths, Steve
  • Bazilian, Morgan
  • Kim, Jinsoo
  • Rooney, David

Abstract

Glass is a material inextricably linked with human civilization. It is also the product of an energy intensive industry. About 75%–85% of the total energy requirements to produce glass occur when the raw materials are heated in a furnace to more than 1500 °C. During this process, large volumes of emissions arise. The container and flat glass industries, which combined account for 80% of total glass production, emit over 60 million tonne of CO2 per year. However, environmental issues relating to the glass industry are not just limited to the manufacturing stage, but also from raw materials extraction, which impacts local ecosystems and creates other environmental challenges associated with tailing ponds, waste disposal and landfills. This systematic review poses five questions to examine these issues and themes: What alternatives exist to abate the climate effects of glass and thus make the full life cycle of glass more sustainable? What are the key determinants of energy and carbon from glass? What technical innovations have been identified to make glass manufacturing low to zero carbon? What benefits will amass from more carbon-friendly process in glass manufacturing, and what barriers will need tackling? To examine these questions, this study presents the findings of a comprehensive and critical systematic review of 701 studies (and a shorter sample of 375 studies examined in depth). A sociotechnical lens is used to assess glass manufacturing and use across multiple sectors (including buildings, automotive manufacturing, construction, electronics, and renewable energy), and options to decarbonize. The study identifies a number of barriers ranging from financial to infrastructural capacity, along with high potential avenues for future research.

Suggested Citation

  • Furszyfer Del Rio, Dylan D. & Sovacool, Benjamin K. & Foley, Aoife M. & Griffiths, Steve & Bazilian, Morgan & Kim, Jinsoo & Rooney, David, 2022. "Decarbonizing the glass industry: A critical and systematic review of developments, sociotechnical systems and policy options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
  • Handle: RePEc:eee:rensus:v:155:y:2022:i:c:s1364032121011527
    DOI: 10.1016/j.rser.2021.111885
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032121011527
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2021.111885?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kumar, Dileep & Alam, Morshed & Zou, Patrick X.W. & Sanjayan, Jay G. & Memon, Rizwan Ahmed, 2020. "Comparative analysis of building insulation material properties and performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    2. Wintour, Nora., 2015. "The glass industry : recent trends and changes in working conditions and employment relations," ILO Working Papers 994885063402676, International Labour Organization.
    3. Napp, T.A. & Gambhir, A. & Hills, T.P. & Florin, N. & Fennell, P.S, 2014. "A review of the technologies, economics and policy instruments for decarbonising energy-intensive manufacturing industries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 616-640.
    4. Omid Zabihi & Mojtaba Ahmadi & Chao Liu & Roya Mahmoodi & Quanxiang Li & Mahmoud Reza Ghandehari Ferdowsi & Minoo Naebe, 2020. "A Sustainable Approach to the Low-Cost Recycling of Waste Glass Fibres Composites towards Circular Economy," Sustainability, MDPI, vol. 12(2), pages 1-10, January.
    5. Xinbao Liu & Jun Pei & Lin Liu & Hao Cheng & Mi Zhou & Panos M. Pardalos, 2017. "Life Cycle Assessment in an IoT Environment," Springer Optimization and Its Applications, in: Optimization and Management in Manufacturing Engineering, chapter 0, pages 209-246, Springer.
    6. Sorrell, Steve, 2007. "Improving the evidence base for energy policy: The role of systematic reviews," Energy Policy, Elsevier, vol. 35(3), pages 1858-1871, March.
    7. Rehfeldt, M. & Worrell, E. & Eichhammer, W. & Fleiter, T., 2020. "A review of the emission reduction potential of fuel switch towards biomass and electricity in European basic materials industry until 2030," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    8. Pili, R. & García Martínez, L. & Wieland, C. & Spliethoff, H., 2020. "Techno-economic potential of waste heat recovery from German energy-intensive industry with Organic Rankine Cycle technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    9. Jensen, J.P. & Skelton, K., 2018. "Wind turbine blade recycling: Experiences, challenges and possibilities in a circular economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 165-176.
    10. Mendecka, Barbara & Lombardi, Lidia, 2019. "Life cycle environmental impacts of wind energy technologies: A review of simplified models and harmonization of the results," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 462-480.
    11. Nugent, Daniel & Sovacool, Benjamin K., 2014. "Assessing the lifecycle greenhouse gas emissions from solar PV and wind energy: A critical meta-survey," Energy Policy, Elsevier, vol. 65(C), pages 229-244.
    12. Brogaard, Line K. & Damgaard, Anders & Jensen, Morten B. & Barlaz, Morton & Christensen, Thomas H., 2014. "Evaluation of life cycle inventory data for recycling systems," Resources, Conservation & Recycling, Elsevier, vol. 87(C), pages 30-45.
    13. Paul G. Harris & Jonathan Symons, 2013. "Norm Conflict in Climate Governance: Greenhouse Gas Accounting and the Problem of Consumption," Global Environmental Politics, MIT Press, vol. 13(1), pages 9-29, February.
    14. Zhao, Tian & Liu, Zhixin, 2019. "A novel analysis of carbon capture and storage (CCS) technology adoption: An evolutionary game model between stakeholders," Energy, Elsevier, vol. 189(C).
    15. Rissman, Jeffrey & Bataille, Chris & Masanet, Eric & Aden, Nate & Morrow, William R. & Zhou, Nan & Elliott, Neal & Dell, Rebecca & Heeren, Niko & Huckestein, Brigitta & Cresko, Joe & Miller, Sabbie A., 2020. "Technologies and policies to decarbonize global industry: Review and assessment of mitigation drivers through 2070," Applied Energy, Elsevier, vol. 266(C).
    16. Lu, Yan & Xu, Zhenming, 2016. "Precious metals recovery from waste printed circuit boards: A review for current status and perspective," Resources, Conservation & Recycling, Elsevier, vol. 113(C), pages 28-39.
    17. Wang, Yu & He, Jijiang & Chen, Wenying, 2021. "Distributed solar photovoltaic development potential and a roadmap at the city level in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    18. Vossberg, Cherilyn & Mason-Jones, Kyle & Cohen, Brett, 2014. "An energetic life cycle assessment of C&D waste and container glass recycling in Cape Town, South Africa," Resources, Conservation & Recycling, Elsevier, vol. 88(C), pages 39-49.
    19. Poulikakos, L.D. & Papadaskalopoulou, C. & Hofko, B. & Gschösser, F. & Cannone Falchetto, A. & Bueno, M. & Arraigada, M. & Sousa, J. & Ruiz, R. & Petit, C. & Loizidou, M. & Partl, M.N., 2017. "Harvesting the unexplored potential of European waste materials for road construction," Resources, Conservation & Recycling, Elsevier, vol. 116(C), pages 32-44.
    20. Lechtenböhmer, Stefan & Nilsson, Lars J. & Åhman, Max & Schneider, Clemens, 2016. "Decarbonising the energy intensive basic materials industry through electrification – Implications for future EU electricity demand," Energy, Elsevier, vol. 115(P3), pages 1623-1631.
    21. Stefano F. Verde & Jordi Teixidó & Claudio Marcantonini & Xavier Labandeira, 2019. "Free allocation rules in the EU emissions trading system: what does the empirical literature show?," Climate Policy, Taylor & Francis Journals, vol. 19(4), pages 439-452, April.
    22. Garlisi, Corrado & Trepci, Esra & Li, Xuan & Al Sakkaf, Reem & Al-Ali, Khalid & Nogueira, Ricardo Pereira & Zheng, Lianxi & Azar, Elie & Palmisano, Giovanni, 2020. "Multilayer thin film structures for multifunctional glass: Self-cleaning, antireflective and energy-saving properties," Applied Energy, Elsevier, vol. 264(C).
    23. Shi, Caijun & Zheng, Keren, 2007. "A review on the use of waste glasses in the production of cement and concrete," Resources, Conservation & Recycling, Elsevier, vol. 52(2), pages 234-247.
    24. Parisi, M.L. & Maranghi, S. & Vesce, L. & Sinicropi, A. & Di Carlo, A. & Basosi, R., 2020. "Prospective life cycle assessment of third-generation photovoltaics at the pre-industrial scale: A long-term scenario approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    25. Butler, John & Hooper, Paul, 2005. "Dilemmas in optimising the environmental benefit from recycling: A case study of glass container waste management in the UK," Resources, Conservation & Recycling, Elsevier, vol. 45(4), pages 331-355.
    26. Garvin A. Heath & Timothy J. Silverman & Michael Kempe & Michael Deceglie & Dwarakanath Ravikumar & Timothy Remo & Hao Cui & Parikhit Sinha & Cara Libby & Stephanie Shaw & Keiichi Komoto & Karsten Wam, 2020. "Research and development priorities for silicon photovoltaic module recycling to support a circular economy," Nature Energy, Nature, vol. 5(7), pages 502-510, July.
    27. Mario Testa & Ornella Malandrino & Maria Rosaria Sessa & Stefania Supino & Daniela Sica, 2017. "Long-Term Sustainability from the Perspective of Cullet Recycling in the Container Glass Industry: Evidence from Italy," Sustainability, MDPI, vol. 9(10), pages 1-19, October.
    28. Roy, J.P. & Mishra, M.K. & Misra, Ashok, 2011. "Performance analysis of an Organic Rankine Cycle with superheating under different heat source temperature conditions," Applied Energy, Elsevier, vol. 88(9), pages 2995-3004.
    29. Kikkawa, Takeo & 橘川, 武郎 & Hirano, So & 平野, 創 & Itagaki, Akira & 板垣, 暁 & Okubo, Izumi, 2014. "Voluntary Or Regulatory? Comparative Business Activities To Mitigate Climate Change," Hitotsubashi Journal of commerce and management, Hitotsubashi University, vol. 48(1), pages 55-80, October.
    30. Wesseling, J.H. & Lechtenböhmer, S. & Åhman, M. & Nilsson, L.J. & Worrell, E. & Coenen, L., 2017. "The transition of energy intensive processing industries towards deep decarbonization: Characteristics and implications for future research," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1303-1313.
    31. Casini, Marco, 2018. "Active dynamic windows for buildings: A review," Renewable Energy, Elsevier, vol. 119(C), pages 923-934.
    32. Hossain, Md. Uzzal & Poon, Chi Sun & Lo, Irene M.C. & Cheng, Jack C.P., 2017. "Comparative LCA on using waste materials in the cement industry: A Hong Kong case study," Resources, Conservation & Recycling, Elsevier, vol. 120(C), pages 199-208.
    33. Sovacool, Benjamin K. & Griffiths, Steve & Kim, Jinsoo & Bazilian, Morgan, 2021. "Climate change and industrial F-gases: A critical and systematic review of developments, sociotechnical systems and policy options for reducing synthetic greenhouse gas emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    34. Frank Goetzke & Tilmann Rave & Ursula Triebswetter, 2012. "Diffusion of environmental technologies: a patent citation analysis of glass melting and glass burners," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 14(2), pages 189-217, April.
    35. Sovacool, Benjamin K. & Bazilian, Morgan & Griffiths, Steve & Kim, Jinsoo & Foley, Aoife & Rooney, David, 2021. "Decarbonizing the food and beverages industry: A critical and systematic review of developments, sociotechnical systems and policy options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    36. Schmitz, Andreas & Kaminski, Jacek & Maria Scalet, Bianca & Soria, Antonio, 2011. "Energy consumption and CO2 emissions of the European glass industry," Energy Policy, Elsevier, vol. 39(1), pages 142-155, January.
    37. Mette Bendixen & Jim Best & Chris Hackney & Lars Lønsmann Iversen, 2019. "Time is running out for sand," Nature, Nature, vol. 571(7763), pages 29-31, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Upham, Dr Paul & Sovacool, Prof Benjamin & Ghosh, Dr Bipashyee, 2022. "Just transitions for industrial decarbonisation: A framework for innovation, participation, and justice," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    2. Kusuma, Ravi Teja & Hiremath, Rahul B. & Rajesh, Pachimatla & Kumar, Bimlesh & Renukappa, Suresh, 2022. "Sustainable transition towards biomass-based cement industry: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    3. Ahmed M. E. Khalil & Anne P. M. Velenturf & Masoud Ahmadinia & Shaowei Zhang, 2023. "Context Analysis for Transformative Change in the Ceramic Industry," Sustainability, MDPI, vol. 15(16), pages 1-25, August.
    4. Furszyfer Del Rio, Dylan D. & Sovacool, Benjamin K. & Foley, Aoife M. & Griffiths, Steve & Bazilian, Morgan & Kim, Jinsoo & Rooney, David, 2022. "Decarbonizing the ceramics industry: A systematic and critical review of policy options, developments and sociotechnical systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    5. Whittaker, Lucas & Mulcahy, Rory & Letheren, Kate & Kietzmann, Jan & Russell-Bennett, Rebekah, 2023. "Mapping the deepfake landscape for innovation: A multidisciplinary systematic review and future research agenda," Technovation, Elsevier, vol. 125(C).
    6. Hechelmann, Ron-Hendrik & Paris, Aaron & Buchenau, Nadja & Ebersold, Felix, 2023. "Decarbonisation strategies for manufacturing: A technical and economic comparison," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    7. Furszyfer Del Rio, Dylan D. & Sovacool, Benjamin K. & Griffiths, Steve & Bazilian, Morgan & Kim, Jinsoo & Foley, Aoife M. & Rooney, David, 2022. "Decarbonizing the pulp and paper industry: A critical and systematic review of sociotechnical developments and policy options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    8. Sovacool, Benjamin K. & Iskandarova, Marfuga & Geels, Frank W., 2023. "“Bigger than government”: Exploring the social construction and contestation of net-zero industrial megaprojects in England," Technological Forecasting and Social Change, Elsevier, vol. 188(C).
    9. Griffiths, Steve & Sovacool, Benjamin K. & Furszyfer Del Rio, Dylan D. & Foley, Aoife M. & Bazilian, Morgan D. & Kim, Jinsoo & Uratani, Joao M., 2023. "Decarbonizing the cement and concrete industry: A systematic review of socio-technical systems, technological innovations, and policy options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 180(C).
    10. McLaughlin, Hope & Littlefield, Anna A. & Menefee, Maia & Kinzer, Austin & Hull, Tobias & Sovacool, Benjamin K. & Bazilian, Morgan D. & Kim, Jinsoo & Griffiths, Steven, 2023. "Carbon capture utilization and storage in review: Sociotechnical implications for a carbon reliant world," Renewable and Sustainable Energy Reviews, Elsevier, vol. 177(C).
    11. Alessandro Franco & Lorenzo Miserocchi & Daniele Testi, 2023. "Energy Indicators for Enabling Energy Transition in Industry," Energies, MDPI, vol. 16(2), pages 1-18, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Griffiths, Steve & Sovacool, Benjamin K. & Furszyfer Del Rio, Dylan D. & Foley, Aoife M. & Bazilian, Morgan D. & Kim, Jinsoo & Uratani, Joao M., 2023. "Decarbonizing the cement and concrete industry: A systematic review of socio-technical systems, technological innovations, and policy options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 180(C).
    2. Furszyfer Del Rio, Dylan D. & Sovacool, Benjamin K. & Foley, Aoife M. & Griffiths, Steve & Bazilian, Morgan & Kim, Jinsoo & Rooney, David, 2022. "Decarbonizing the ceramics industry: A systematic and critical review of policy options, developments and sociotechnical systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    3. Skoczkowski, Tadeusz & Verdolini, Elena & Bielecki, Sławomir & Kochański, Max & Korczak, Katarzyna & Węglarz, Arkadiusz, 2020. "Technology innovation system analysis of decarbonisation options in the EU steel industry," Energy, Elsevier, vol. 212(C).
    4. Furszyfer Del Rio, Dylan D. & Sovacool, Benjamin K. & Griffiths, Steve & Bazilian, Morgan & Kim, Jinsoo & Foley, Aoife M. & Rooney, David, 2022. "Decarbonizing the pulp and paper industry: A critical and systematic review of sociotechnical developments and policy options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    5. Anissa Nurdiawati & Frauke Urban, 2021. "Towards Deep Decarbonisation of Energy-Intensive Industries: A Review of Current Status, Technologies and Policies," Energies, MDPI, vol. 14(9), pages 1-33, April.
    6. Rehfeldt, Matthias & Fleiter, Tobias & Herbst, Andrea & Eidelloth, Stefan, 2020. "Fuel switching as an option for medium-term emission reduction - A model-based analysis of reactions to price signals and regulatory action in German industry," Energy Policy, Elsevier, vol. 147(C).
    7. Ren, Lei & Zhou, Sheng & Peng, Tianduo & Ou, Xunmin, 2021. "A review of CO2 emissions reduction technologies and low-carbon development in the iron and steel industry focusing on China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    8. Rehfeldt, M. & Worrell, E. & Eichhammer, W. & Fleiter, T., 2020. "A review of the emission reduction potential of fuel switch towards biomass and electricity in European basic materials industry until 2030," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    9. Malico, Isabel & Nepomuceno Pereira, Ricardo & Gonçalves, Ana Cristina & Sousa, Adélia M.O., 2019. "Current status and future perspectives for energy production from solid biomass in the European industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 960-977.
    10. Konstantinos Koasidis & Alexandros Nikas & Hera Neofytou & Anastasios Karamaneas & Ajay Gambhir & Jakob Wachsmuth & Haris Doukas, 2020. "The UK and German Low-Carbon Industry Transitions from a Sectoral Innovation and System Failures Perspective," Energies, MDPI, vol. 13(19), pages 1-34, September.
    11. Farel, Romain & Yannou, Bernard & Ghaffari, Asma & Leroy, Yann, 2013. "A cost and benefit analysis of future end-of-life vehicle glazing recycling in France: A systematic approach," Resources, Conservation & Recycling, Elsevier, vol. 74(C), pages 54-65.
    12. Róbert Csalódi & Tímea Czvetkó & Viktor Sebestyén & János Abonyi, 2022. "Sectoral Analysis of Energy Transition Paths and Greenhouse Gas Emissions," Energies, MDPI, vol. 15(21), pages 1-26, October.
    13. Sovacool, Benjamin K. & Bazilian, Morgan & Griffiths, Steve & Kim, Jinsoo & Foley, Aoife & Rooney, David, 2021. "Decarbonizing the food and beverages industry: A critical and systematic review of developments, sociotechnical systems and policy options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    14. Hamed, Mohammad M. & Mohammed, Ali & Olabi, Abdul Ghani, 2023. "Renewable energy adoption decisions in Jordan's industrial sector: Statistical analysis with unobserved heterogeneity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    15. Christopher G. F. Bataille, 2020. "Physical and policy pathways to net‐zero emissions industry," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 11(2), March.
    16. Guerin, Turlough F., 2022. "Business model scaling can be used to activate and grow the biogas-to-grid market in Australia to decarbonise hard-to-abate industries: An application of entrepreneurial management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    17. Layritz, Lucia S. & Dolganova, Iulia & Finkbeiner, Matthias & Luderer, Gunnar & Penteado, Alberto T. & Ueckerdt, Falko & Repke, Jens-Uwe, 2021. "The potential of direct steam cracker electrification and carbon capture & utilization via oxidative coupling of methane as decarbonization strategies for ethylene production," Applied Energy, Elsevier, vol. 296(C).
    18. Oscar Svensson & Jamil Khan & Roger Hildingsson, 2020. "Studying Industrial Decarbonisation: Developing an Interdisciplinary Understanding of the Conditions for Transformation in Energy-Intensive Natural Resource-Based Industry," Sustainability, MDPI, vol. 12(5), pages 1-21, March.
    19. Vishnu S Prabhu & Shraddha Shrivastava & Kakali Mukhopadhyay, 2022. "Life Cycle Assessment of Solar Photovoltaic in India: A Circular Economy Approach," Circular Economy and Sustainability,, Springer.
    20. Yecid Muñoz-Maldonado & Edgar Correa-Quintana & Adalberto Ospino-Castro, 2023. "Electrification of Industrial Processes as an Alternative to Replace Conventional Thermal Power Sources," Energies, MDPI, vol. 16(19), pages 1-20, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:155:y:2022:i:c:s1364032121011527. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.