IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i17p6123-d1222756.html
   My bibliography  Save this article

The European Union’s Energy Policy Efforts Regarding Emission Reduction in Cities—A Method Proposal

Author

Listed:
  • Marta Skiba

    (Institute of Architecture and Urban Planning, University of Zielona Góra, 65-417 Zielona Góra, Poland)

  • Maria Mrówczyńska

    (Institute of Civil Engineering, University of Zielona Góra, 65-516 Zielona Góra, Poland)

  • Małgorzata Sztubecka

    (Faculty of Civil and Environmental Engineering and Architecture, Bydgoszcz University of Science and Technology, 85-796 Bydgoszcz, Poland)

  • Alicja Maciejko

    (Institute of Architecture and Urban Planning, University of Zielona Góra, 65-417 Zielona Góra, Poland)

  • Natalia Rzeszowska

    (Institute of Architecture and Urban Planning, University of Zielona Góra, 65-417 Zielona Góra, Poland)

Abstract

Decisions regarding waste and emission management systems are subject to many sustainability criteria, including environmental, social, and economic criteria. The problem is the multidimensionality of the energy transformation and its reading from different perspectives. This article aims to assess the effectiveness of the municipal energy policy. The VIKOR multicriteria analysis approach to modeling and Criteria Importance Through Intercriteria Correlation were chosen for the method. The approach made it possible to create a ranking and choose a compromise solution. The analyses were carried out for four areas of intervention (ETS tariffs), in which a set of four general criteria and twelve specific criteria were distinguished, and based on the weights assigned, rankings were created highlighting the activities that have the greatest impact on low emission in urban areas. Based on the analyses, it was found that the most significant impact on reducing emissions in urban areas has led to decisions to increase investments in renewable energy sources and promote the reduction in household energy consumption.

Suggested Citation

  • Marta Skiba & Maria Mrówczyńska & Małgorzata Sztubecka & Alicja Maciejko & Natalia Rzeszowska, 2023. "The European Union’s Energy Policy Efforts Regarding Emission Reduction in Cities—A Method Proposal," Energies, MDPI, vol. 16(17), pages 1-26, August.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:17:p:6123-:d:1222756
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/17/6123/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/17/6123/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Anna Barwińska-Małajowicz & Radosław Pyrek & Krzysztof Szczotka & Jakub Szymiczek & Teresa Piecuch, 2023. "Improving the Energy Efficiency of Public Utility Buildings in Poland through Thermomodernization and Renewable Energy Sources—A Case Study," Energies, MDPI, vol. 16(10), pages 1-21, May.
    2. Kuriqi, Alban & Pinheiro, António N. & Sordo-Ward, Alvaro & Garrote, Luis, 2019. "Flow regime aspects in determining environmental flows and maximising energy production at run-of-river hydropower plants," Applied Energy, Elsevier, vol. 256(C).
    3. Cansu Iraz Seyrek Şık & Agata Woźniczka & Barbara Widera, 2022. "A Conceptual Framework for the Design of Energy-Efficient Vertical Green Façades," Energies, MDPI, vol. 15(21), pages 1-19, October.
    4. Mrówczyńska, Maria & Skiba, Marta & Bazan-Krzywoszańska, Anna & Sztubecka, Małgorzata, 2020. "Household standards and socio-economic aspects as a factor determining energy consumption in the city," Applied Energy, Elsevier, vol. 264(C).
    5. Torkayesh, Ali Ebadi & Rajaeifar, Mohammad Ali & Rostom, Madona & Malmir, Behnam & Yazdani, Morteza & Suh, Sangwon & Heidrich, Oliver, 2022. "Integrating life cycle assessment and multi criteria decision making for sustainable waste management: Key issues and recommendations for future studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    6. Keirstead, James & Jennings, Mark & Sivakumar, Aruna, 2012. "A review of urban energy system models: Approaches, challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3847-3866.
    7. Krstić-Furundžić, Aleksandra & Vujošević, Milica & Petrovski, Aleksandar, 2019. "Energy and environmental performance of the office building facade scenarios," Energy, Elsevier, vol. 183(C), pages 437-447.
    8. Butturi, M.A. & Lolli, F. & Sellitto, M.A. & Balugani, E. & Gamberini, R. & Rimini, B., 2019. "Renewable energy in eco-industrial parks and urban-industrial symbiosis: A literature review and a conceptual synthesis," Applied Energy, Elsevier, vol. 255(C).
    9. Shui Yu & He Liu & Lu Bai & Fuhong Han, 2019. "Study on the Suitability of Passive Energy in Public Institutions in China," Energies, MDPI, vol. 12(12), pages 1-14, June.
    10. Thellufsen, J.Z. & Lund, H. & Sorknæs, P. & Østergaard, P.A. & Chang, M. & Drysdale, D. & Nielsen, S. & Djørup, S.R. & Sperling, K., 2020. "Smart energy cities in a 100% renewable energy context," Renewable and Sustainable Energy Reviews, Elsevier, vol. 129(C).
    11. Li, Ke & Lin, Boqiang, 2015. "Impacts of urbanization and industrialization on energy consumption/CO2 emissions: Does the level of development matter?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1107-1122.
    12. Lasemi, Mohammad Ali & Arabkoohsar, Ahmad & Hajizadeh, Amin & Mohammadi-ivatloo, Behnam, 2022. "A comprehensive review on optimization challenges of smart energy hubs under uncertainty factors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    13. Stoeglehner, G. & Abart-Heriszt, L., 2022. "Integrated spatial and energy planning in Styria – A role model for local and regional energy transition and climate protection policies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    14. Griffiths, Steve & Sovacool, Benjamin K. & Furszyfer Del Rio, Dylan D. & Foley, Aoife M. & Bazilian, Morgan D. & Kim, Jinsoo & Uratani, Joao M., 2023. "Decarbonizing the cement and concrete industry: A systematic review of socio-technical systems, technological innovations, and policy options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 180(C).
    15. Opricovic, Serafim & Tzeng, Gwo-Hshiung, 2004. "Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS," European Journal of Operational Research, Elsevier, vol. 156(2), pages 445-455, July.
    16. Zell-Ziegler, Carina & Thema, Johannes & Best, Benjamin & Wiese, Frauke & Lage, Jonas & Schmidt, Annika & Toulouse, Edouard & Stagl, Sigrid, 2021. "Enough? The role of sufficiency in European energy and climate plans," Energy Policy, Elsevier, vol. 157(C).
    17. Joanna Badach & Jakub Szczepański & Wojciech Bonenberg & Jacek Gębicki & Lucyna Nyka, 2022. "Developing the Urban Blue-Green Infrastructure as a Tool for Urban Air Quality Management," Sustainability, MDPI, vol. 14(15), pages 1-29, August.
    18. Filip Bartyzel & Tomasz Wegiel & Magdalena Kozień-Woźniak & Marek Czamara, 2022. "Numerical Simulation of Operating Parameters of the Ground Source Heat Pump," Energies, MDPI, vol. 15(1), pages 1-13, January.
    19. Scheller, Fabian & Bruckner, Thomas, 2019. "Energy system optimization at the municipal level: An analysis of modeling approaches and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 444-461.
    20. Dominik Sędzicki & Jan Cudzik & Lucyna Nyka, 2023. "Computer-Aided Greenery Design—Prototype Green Structure Improving Human Health in Urban Ecosystem," IJERPH, MDPI, vol. 20(2), pages 1-20, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chang, Miguel & Thellufsen, Jakob Zink & Zakeri, Behnam & Pickering, Bryn & Pfenninger, Stefan & Lund, Henrik & Østergaard, Poul Alberg, 2021. "Trends in tools and approaches for modelling the energy transition," Applied Energy, Elsevier, vol. 290(C).
    2. Jan K. Kazak & Joanna A. Kamińska & Rafał Madej & Marta Bochenkiewicz, 2020. "Where Renewable Energy Sources Funds are Invested? Spatial Analysis of Energy Production Potential and Public Support," Energies, MDPI, vol. 13(21), pages 1-26, October.
    3. Jann Michael Weinand, 2020. "Reviewing Municipal Energy System Planning in a Bibliometric Analysis: Evolution of the Research Field between 1991 and 2019," Energies, MDPI, vol. 13(6), pages 1-18, March.
    4. Wang, Qipeng & Zhao, Liang, 2023. "Data-driven stochastic robust optimization of sustainable utility system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    5. Zhou, Anhua & Li, Jun, 2022. "How do trade liberalization and human capital affect renewable energy consumption? Evidence from the panel threshold model," Renewable Energy, Elsevier, vol. 184(C), pages 332-342.
    6. Kleinebrahm, Max & Weinand, Jann Michael & Naber, Elias & McKenna, Russell & Ardone, Armin, 2023. "Analysing municipal energy system transformations in line with national greenhouse gas reduction strategies," Applied Energy, Elsevier, vol. 332(C).
    7. Wang, Shaojian & Xie, Zihan & Wu, Rong & Feng, Kuishang, 2022. "How does urbanization affect the carbon intensity of human well-being? A global assessment," Applied Energy, Elsevier, vol. 312(C).
    8. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    9. Skiba, Marta & Mrówczyńska, Maria & Sztubecka, Małgorzata & Bazan-Krzywoszańska, Anna & Kazak, Jan K. & Leśniak, Agnieszka & Janowiec, Filip, 2021. "Probability estimation of the city’s energy efficiency improvement as a result of using the phase change materials in heating networks," Energy, Elsevier, vol. 228(C).
    10. Verma, Pramit & Kumari, Tanu & Raghubanshi, Akhilesh Singh, 2021. "Energy emissions, consumption and impact of urban households: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    11. Hofbauer, Leonhard & McDowall, Will & Pye, Steve, 2022. "Challenges and opportunities for energy system modelling to foster multi-level governance of energy transitions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    12. Bouw, Kathelijne & Noorman, Klaas Jan & Wiekens, Carina J. & Faaij, André, 2021. "Local energy planning in the built environment: An analysis of model characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    13. Fabian Scheller & Frauke Wiese & Jann Michael Weinand & Dominik Franjo Dominkovi'c & Russell McKenna, 2021. "An expert survey to assess the current status and future challenges of energy system analysis," Papers 2106.15518, arXiv.org.
    14. Mrówczyńska, M. & Skiba, M. & Sztubecka, M. & Bazan-Krzywoszańska, A. & Kazak, J.K. & Gajownik, P., 2021. "Scenarios as a tool supporting decisions in urban energy policy: The analysis using fuzzy logic, multi-criteria analysis and GIS tools," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    15. Weinand, Jann Michael & Scheller, Fabian & McKenna, Russell, 2020. "Reviewing energy system modelling of decentralized energy autonomy," Energy, Elsevier, vol. 203(C).
    16. Viktor Bukovszki & Ábel Magyari & Marina Kristina Braun & Kitti Párdi & András Reith, 2020. "Energy Modelling as a Trigger for Energy Communities: A Joint Socio-Technical Perspective," Energies, MDPI, vol. 13(9), pages 1-44, May.
    17. Kachirayil, Febin & Weinand, Jann Michael & Scheller, Fabian & McKenna, Russell, 2022. "Reviewing local and integrated energy system models: insights into flexibility and robustness challenges," Applied Energy, Elsevier, vol. 324(C).
    18. Yi Peng, 2015. "Regional earthquake vulnerability assessment using a combination of MCDM methods," Annals of Operations Research, Springer, vol. 234(1), pages 95-110, November.
    19. Wang, Jiangjiang & Deng, Hongda & Qi, Xiaoling, 2022. "Cost-based site and capacity optimization of multi-energy storage system in the regional integrated energy networks," Energy, Elsevier, vol. 261(PA).
    20. Zheng, Guozhong & Wang, Xiao, 2020. "The comprehensive evaluation of renewable energy system schemes in tourist resorts based on VIKOR method," Energy, Elsevier, vol. 193(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:17:p:6123-:d:1222756. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.