IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v150y2021ics1364032121007577.html
   My bibliography  Save this article

Energy system resilience – A review

Author

Listed:
  • Jasiūnas, Justinas
  • Lund, Peter D.
  • Mikkola, Jani

Abstract

The term resilience describes the ability to survive and quickly recover from extreme and unexpected disruptions. A high energy system resilience is of utmost importance to modern societies that are highly dependent on continued access to energy services. This review covers the terminology of energy system resilience and the assessment of a broad landscape of threats mapped with the proposed framework. A more detailed discussion on two specific threats are given: extreme weather, which is the cause for most of the energy supply disruptions, and cyberattacks, which still are a minor, but rapidly increasing concern. The framework integrates various perspectives on energy system threats by showcasing interactions between the parts of the energy system and its environment. Weather-related threats are discussed distinguishing relevant meteorological parameters and different durations of disruptions, increasingly related to the impacts of the climate change. Extremes in space weather caused by solar activity are very rare, but are nonetheless considered due to their potentially catastrophic impacts on a global scale. Digitalization of energy systems, e.g. through smart grids important to renewable electricity utilization, may as such improve resilience from traditional weather and technical failure threats, but it also introduces new vulnerabilities to cyberattacks. Major differences between the internet and smart grids limit the applicability of existing cybersecurity solutions to the energy sector. Other structural energy system changes will likely bring new threats, which call for updating the threat landscape for expected system development scenarios.

Suggested Citation

  • Jasiūnas, Justinas & Lund, Peter D. & Mikkola, Jani, 2021. "Energy system resilience – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
  • Handle: RePEc:eee:rensus:v:150:y:2021:i:c:s1364032121007577
    DOI: 10.1016/j.rser.2021.111476
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032121007577
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2021.111476?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Molyneaux, Lynette & Brown, Colin & Wagner, Liam & Foster, John, 2016. "Measuring resilience in energy systems: Insights from a range of disciplines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1068-1079.
    2. Leszczyna, Rafał, 2018. "Standards on cyber security assessment of smart grid," International Journal of Critical Infrastructure Protection, Elsevier, vol. 22(C), pages 70-89.
    3. Roques, Fabien & Finon, Dominique, 2017. "Adapting electricity markets to decarbonisation and security of supply objectives: Toward a hybrid regime?," Energy Policy, Elsevier, vol. 105(C), pages 584-596.
    4. Ciscar, Juan-Carlos & Dowling, Paul, 2014. "Integrated assessment of climate impacts and adaptation in the energy sector," Energy Economics, Elsevier, vol. 46(C), pages 531-538.
    5. Alexis Kwasinski, 2016. "Quantitative Model and Metrics of Electrical Grids’ Resilience Evaluated at a Power Distribution Level," Energies, MDPI, vol. 9(2), pages 1-27, February.
    6. Hosseini, Seyedmohsen & Barker, Kash & Ramirez-Marquez, Jose E., 2016. "A review of definitions and measures of system resilience," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 47-61.
    7. Johansson, Bengt, 2013. "Security aspects of future renewable energy systems–A short overview," Energy, Elsevier, vol. 61(C), pages 598-605.
    8. Bouwmeester, Maaike C. & Oosterhaven, J., 2017. "Economic impacts of natural gas flow disruptions between Russia and the EU," Energy Policy, Elsevier, vol. 106(C), pages 288-297.
    9. Winzer, Christian, 2012. "Conceptualizing energy security," Energy Policy, Elsevier, vol. 46(C), pages 36-48.
    10. Löschel, Andreas & Moslener, Ulf & Rübbelke, Dirk T.G., 2010. "Indicators of energy security in industrialised countries," Energy Policy, Elsevier, vol. 38(4), pages 1665-1671, April.
    11. Fauzan Hanif Jufri & Jun-Sung Kim & Jaesung Jung, 2017. "Analysis of Determinants of the Impact and the Grid Capability to Evaluate and Improve Grid Resilience from Extreme Weather Event," Energies, MDPI, vol. 10(11), pages 1-17, November.
    12. Månsson, André & Johansson, Bengt & Nilsson, Lars J., 2014. "Assessing energy security: An overview of commonly used methodologies," Energy, Elsevier, vol. 73(C), pages 1-14.
    13. Cherp, Aleh & Jewell, Jessica, 2014. "The concept of energy security: Beyond the four As," Energy Policy, Elsevier, vol. 75(C), pages 415-421.
    14. Kruyt, Bert & van Vuuren, D.P. & de Vries, H.J.M. & Groenenberg, H., 2009. "Indicators for energy security," Energy Policy, Elsevier, vol. 37(6), pages 2166-2181, June.
    15. Hdidouan, Daniel & Staffell, Iain, 2017. "The impact of climate change on the levelised cost of wind energy," Renewable Energy, Elsevier, vol. 101(C), pages 575-592.
    16. Sharifi, Ayyoob & Yamagata, Yoshiki, 2016. "Principles and criteria for assessing urban energy resilience: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1654-1677.
    17. Bonjean Stanton, Muriel C. & Dessai, Suraje & Paavola, Jouni, 2016. "A systematic review of the impacts of climate variability and change on electricity systems in Europe," Energy, Elsevier, vol. 109(C), pages 1148-1159.
    18. Koletsis, I. & Kotroni, V. & Lagouvardos, K. & Soukissian, T., 2016. "Assessment of offshore wind speed and power potential over the Mediterranean and the Black Seas under future climate changes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 234-245.
    19. Dowling, Paul, 2013. "The impact of climate change on the European energy system," Energy Policy, Elsevier, vol. 60(C), pages 406-417.
    20. Davy, Richard & Gnatiuk, Natalia & Pettersson, Lasse & Bobylev, Leonid, 2018. "Climate change impacts on wind energy potential in the European domain with a focus on the Black Sea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1652-1659.
    21. Roege, Paul E. & Collier, Zachary A. & Mancillas, James & McDonagh, John A. & Linkov, Igor, 2014. "Metrics for energy resilience," Energy Policy, Elsevier, vol. 72(C), pages 249-256.
    22. Petitet, Marie & Finon, Dominique & Janssen, Tanguy, 2017. "Capacity adequacy in power markets facing energy transition: A comparison of scarcity pricing and capacity mechanism," Energy Policy, Elsevier, vol. 103(C), pages 30-46.
    23. Salman, Abdullahi M. & Li, Yue & Stewart, Mark G., 2015. "Evaluating system reliability and targeted hardening strategies of power distribution systems subjected to hurricanes," Reliability Engineering and System Safety, Elsevier, vol. 144(C), pages 319-333.
    24. Hagen, Janne, 2018. "Building resilience against cyber threats in the energy sector," International Journal of Critical Infrastructure Protection, Elsevier, vol. 20(C), pages 26-27.
    25. Cooper, Christopher & Sovacool, Benjamin K., 2011. "Not Your Father's Y2K: Preparing the North American Power Grid for the Perfect Solar Storm," The Electricity Journal, Elsevier, vol. 24(4), pages 47-61, May.
    26. Henry, Devanandham & Emmanuel Ramirez-Marquez, Jose, 2012. "Generic metrics and quantitative approaches for system resilience as a function of time," Reliability Engineering and System Safety, Elsevier, vol. 99(C), pages 114-122.
    27. Cadini, Francesco & Agliardi, Gian Luca & Zio, Enrico, 2017. "A modeling and simulation framework for the reliability/availability assessment of a power transmission grid subject to cascading failures under extreme weather conditions," Applied Energy, Elsevier, vol. 185(P1), pages 267-279.
    28. Moslehi, Salim & Reddy, T. Agami, 2018. "Sustainability of integrated energy systems: A performance-based resilience assessment methodology," Applied Energy, Elsevier, vol. 228(C), pages 487-498.
    29. Gracceva, Francesco & Zeniewski, Peter, 2014. "A systemic approach to assessing energy security in a low-carbon EU energy system," Applied Energy, Elsevier, vol. 123(C), pages 335-348.
    30. Vivoda, Vlado, 2010. "Evaluating energy security in the Asia-Pacific region: A novel methodological approach," Energy Policy, Elsevier, vol. 38(9), pages 5258-5263, September.
    31. Johansson, Jonas & Hassel, Henrik & Zio, Enrico, 2013. "Reliability and vulnerability analyses of critical infrastructures: Comparing two approaches in the context of power systems," Reliability Engineering and System Safety, Elsevier, vol. 120(C), pages 27-38.
    32. Lovering, Jessica R. & Yip, Arthur & Nordhaus, Ted, 2016. "Historical construction costs of global nuclear power reactors," Energy Policy, Elsevier, vol. 91(C), pages 371-382.
    33. Wilkinson, Sam & Maticka, Martin J. & Liu, Yue & John, Michele, 2021. "The duck curve in a drying pond: The impact of rooftop PV on the Western Australian electricity market transition," Utilities Policy, Elsevier, vol. 71(C).
    34. Hines, Paul & Apt, Jay & Talukdar, Sarosh, 2009. "Large blackouts in North America: Historical trends and policy implications," Energy Policy, Elsevier, vol. 37(12), pages 5249-5259, December.
    35. Pearson, Ivan L.G., 2011. "Smart grid cyber security for Europe," Energy Policy, Elsevier, vol. 39(9), pages 5211-5218, September.
    36. Arghandeh, Reza & von Meier, Alexandra & Mehrmanesh, Laura & Mili, Lamine, 2016. "On the definition of cyber-physical resilience in power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1060-1069.
    37. Pryor, S.C. & Barthelmie, R.J., 2010. "Climate change impacts on wind energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 430-437, January.
    38. Hernandez-Fajardo, Isaac & Dueñas-Osorio, Leonardo, 2013. "Probabilistic study of cascading failures in complex interdependent lifeline systems," Reliability Engineering and System Safety, Elsevier, vol. 111(C), pages 260-272.
    39. Ananda Kumar, V. & Pandey, Krishan K. & Punia, Devendra Kumar, 2014. "Cyber security threats in the power sector: Need for a domain specific regulatory framework in India," Energy Policy, Elsevier, vol. 65(C), pages 126-133.
    40. Sircar, Indraneel & Sage, Daniel & Goodier, Chris & Fussey, Pete & Dainty, Andrew, 2013. "Constructing resilient futures: integrating UK multi-stakeholder transport and energy resilience for 2050," LSE Research Online Documents on Economics 69768, London School of Economics and Political Science, LSE Library.
    41. López Prol, Javier, 2018. "Regulation, profitability and diffusion of photovoltaic grid-connected systems: A comparative analysis of Germany and Spain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1170-1181.
    42. Hansen, Aaron & Staggs, Jason & Shenoi, Sujeet, 2017. "Security analysis of an advanced metering infrastructure," International Journal of Critical Infrastructure Protection, Elsevier, vol. 18(C), pages 3-19.
    43. Staggs, Jason & Ferlemann, David & Shenoi, Sujeet, 2017. "Wind farm security: attack surface, targets, scenarios and mitigation," International Journal of Critical Infrastructure Protection, Elsevier, vol. 17(C), pages 3-14.
    44. Abdelrahman Azzuni & Christian Breyer, 2018. "Definitions and dimensions of energy security: a literature review," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 7(1), January.
    45. Jewell, Jessica & Cherp, Aleh & Riahi, Keywan, 2014. "Energy security under de-carbonization scenarios: An assessment framework and evaluation under different technology and policy choices," Energy Policy, Elsevier, vol. 65(C), pages 743-760.
    46. Rose, Adam & Wei, Dan & Paul, Donald, 2018. "Economic consequences of and resilience to a disruption of petroleum trade: The role of seaports in U.S. energy security," Energy Policy, Elsevier, vol. 115(C), pages 584-615.
    47. Dirks, James A. & Gorrissen, Willy J. & Hathaway, John H. & Skorski, Daniel C. & Scott, Michael J. & Pulsipher, Trenton C. & Huang, Maoyi & Liu, Ying & Rice, Jennie S., 2015. "Impacts of climate change on energy consumption and peak demand in buildings: A detailed regional approach," Energy, Elsevier, vol. 79(C), pages 20-32.
    48. Zhai, Chengwei & Chen, Thomas Ying-jeh & White, Anna Grace & Guikema, Seth David, 2021. "Power outage prediction for natural hazards using synthetic power distribution systems," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    49. Pereira de Lucena, André Frossard & Szklo, Alexandre Salem & Schaeffer, Roberto & Dutra, Ricardo Marques, 2010. "The vulnerability of wind power to climate change in Brazil," Renewable Energy, Elsevier, vol. 35(5), pages 904-912.
    50. Barbara Tchórzewska-Cieślak & Katarzyna Pietrucha-Urbanik, 2018. "Approaches to Methods of Risk Analysis and Assessment Regarding the Gas Supply to a City," Energies, MDPI, vol. 11(12), pages 1-13, November.
    51. Strunz, Sebastian, 2014. "The German energy transition as a regime shift," Ecological Economics, Elsevier, vol. 100(C), pages 150-158.
    52. Hamilton, Michelle C. & Lambert, James H. & Connelly, Elizabeth B. & Barker, Kash, 2016. "Resilience analytics with disruption of preferences and lifecycle cost analysis for energy microgrids," Reliability Engineering and System Safety, Elsevier, vol. 150(C), pages 11-21.
    53. Chester, Lynne, 2010. "Conceptualising energy security and making explicit its polysemic nature," Energy Policy, Elsevier, vol. 38(2), pages 887-895, February.
    54. Wang, Jing & Zuo, Wangda & Rhode-Barbarigos, Landolf & Lu, Xing & Wang, Jianhui & Lin, Yanling, 2019. "Literature review on modeling and simulation of energy infrastructures from a resilience perspective," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 360-373.
    55. Ang, B.W. & Choong, W.L. & Ng, T.S., 2015. "Energy security: Definitions, dimensions and indexes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1077-1093.
    56. Hoggett, Richard, 2014. "Technology scale and supply chains in a secure, affordable and low carbon energy transition," Applied Energy, Elsevier, vol. 123(C), pages 296-306.
    57. Johnson, Dana L. & Erhardt, Robert J., 2016. "Projected impacts of climate change on wind energy density in the United States," Renewable Energy, Elsevier, vol. 85(C), pages 66-73.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Naseri, F. & Gil, S. & Barbu, C. & Cetkin, E. & Yarimca, G. & Jensen, A.C. & Larsen, P.G. & Gomes, C., 2023. "Digital twin of electric vehicle battery systems: Comprehensive review of the use cases, requirements, and platforms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
    2. Wang, Wei & Cova, Gregorio & Zio, Enrico, 2022. "A clustering-based framework for searching vulnerabilities in the operation dynamics of Cyber-Physical Energy Systems," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    3. Qian, Lanping & Bai, Yang & Wang, Wenya & Meng, Fanyi & Chen, Zhisong, 2023. "Natural gas crisis, system resilience and emergency responses: A China case," Energy, Elsevier, vol. 276(C).
    4. Chad Zanocco & Tao Sun & Gregory Stelmach & June Flora & Ram Rajagopal & Hilary Boudet, 2022. "Assessing Californians’ awareness of their daily electricity use patterns," Nature Energy, Nature, vol. 7(12), pages 1191-1199, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. García-Gusano, Diego & Iribarren, Diego, 2018. "Prospective energy security scenarios in Spain: The future role of renewable power generation technologies and climate change implications," Renewable Energy, Elsevier, vol. 126(C), pages 202-209.
    2. Zhang, Long & Bai, Wuliyasu & Xiao, Huijuan & Ren, Jingzheng, 2021. "Measuring and improving regional energy security: A methodological framework based on both quantitative and qualitative analysis," Energy, Elsevier, vol. 227(C).
    3. Larsen, Erik R. & Osorio, Sebastian & van Ackere, Ann, 2017. "A framework to evaluate security of supply in the electricity sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 646-655.
    4. Adriana Mar & Pedro Pereira & João F. Martins, 2019. "A Survey on Power Grid Faults and Their Origins: A Contribution to Improving Power Grid Resilience," Energies, MDPI, vol. 12(24), pages 1-21, December.
    5. Valdés Lucas, Javier Noel & Escribano Francés, Gonzalo & San Martín González, Enrique, 2016. "Energy security and renewable energy deployment in the EU: Liaisons Dangereuses or Virtuous Circle?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1032-1046.
    6. Evgeny Lisin & Wadim Strielkowski & Veronika Chernova & Alena Fomina, 2018. "Assessment of the Territorial Energy Security in the Context of Energy Systems Integration," Energies, MDPI, vol. 11(12), pages 1-14, November.
    7. Ahmadi, Somayeh & Saboohi, Yadollah & Vakili, Ali, 2021. "Frameworks, quantitative indicators, characters, and modeling approaches to analysis of energy system resilience: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    8. Aurelia Rybak & Aleksandra Rybak & Jarosław Joostberens, 2023. "The Impact of Removing Coal from Poland’s Energy Mix on Selected Aspects of the Country’s Energy Security," Sustainability, MDPI, vol. 15(4), pages 1-13, February.
    9. Cherp, Aleh & Jewell, Jessica, 2014. "The concept of energy security: Beyond the four As," Energy Policy, Elsevier, vol. 75(C), pages 415-421.
    10. Sannamari Pilpola & Vahid Arabzadeh & Jani Mikkola & Peter D. Lund, 2019. "Analyzing National and Local Pathways to Carbon-Neutrality from Technology, Emissions, and Resilience Perspectives—Case of Finland," Energies, MDPI, vol. 12(5), pages 1-22, March.
    11. Ziyi Wang & Zengqiao Chen & Cuiping Ma & Ronald Wennersten & Qie Sun, 2022. "Nationwide Evaluation of Urban Energy System Resilience in China Using a Comprehensive Index Method," Sustainability, MDPI, vol. 14(4), pages 1-36, February.
    12. Gong, Xu & Wang, You & Lin, Boqiang, 2021. "Assessing dynamic China’s energy security: Based on functional data analysis," Energy, Elsevier, vol. 217(C).
    13. Linas Martišauskas & Juozas Augutis & Ričardas Krikštolaitis & Rolandas Urbonas & Inga Šarūnienė & Vytis Kopustinskas, 2022. "A Framework to Assess the Resilience of Energy Systems Based on Quantitative Indicators," Energies, MDPI, vol. 15(11), pages 1-25, May.
    14. Umunnakwe, A. & Huang, H. & Oikonomou, K. & Davis, K.R., 2021. "Quantitative analysis of power systems resilience: Standardization, categorizations, and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    15. Ang, B.W. & Choong, W.L. & Ng, T.S., 2015. "Energy security: Definitions, dimensions and indexes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1077-1093.
    16. Zaman, Rafia & Brudermann, Thomas, 2018. "Energy governance in the context of energy service security: A qualitative assessment of the electricity system in Bangladesh," Applied Energy, Elsevier, vol. 223(C), pages 443-456.
    17. Tomasz Rokicki & Aleksandra Perkowska, 2021. "Diversity and Changes in the Energy Balance in EU Countries," Energies, MDPI, vol. 14(4), pages 1-19, February.
    18. John A. Paravantis, 2019. "Dimensions, Components and Metrics of Energy Security: Review and Synthesis," SPOUDAI Journal of Economics and Business, SPOUDAI Journal of Economics and Business, University of Piraeus, vol. 69(4), pages 38-52, October-D.
    19. Jufri, Fauzan Hanif & Widiputra, Victor & Jung, Jaesung, 2019. "State-of-the-art review on power grid resilience to extreme weather events: Definitions, frameworks, quantitative assessment methodologies, and enhancement strategies," Applied Energy, Elsevier, vol. 239(C), pages 1049-1065.
    20. Jacek Strojny & Anna Krakowiak-Bal & Jarosław Knaga & Piotr Kacorzyk, 2023. "Energy Security: A Conceptual Overview," Energies, MDPI, vol. 16(13), pages 1-35, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:150:y:2021:i:c:s1364032121007577. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.