IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v137y2021ics136403212030719x.html
   My bibliography  Save this article

An analysis of bio-digester substrate heating methods: A review

Author

Listed:
  • Makamure, Francis
  • Mukumba, Patrick
  • Makaka, Golden

Abstract

This review paper studied substrate heating methods currently used in Bio-digesters with a view to assess their effectiveness in establishing and maintaining a stable temperature in a bio-digester. Stable temperature is known to enhance biogas productivity and process stability. Four heating approaches, on-vessel; floor heating; in-vessel and ex-vessel, were critically analyzed. The analysis focused on their potential to distribute heat and temperature uniformly in the whole volume of digester slurry, the ultimate effect on the methane content and quantity of the biogas produced and applicability to small scale household digesters. The study revealed that the In-vessel heating approach has the best heat and temperature distribution and that since the microbial activities responsible for methane production are sensitive to temperature fluctuations, has the highest potential to produce high quantity and quality biogas. The heating approach can also be easily applied to household biodigesters. It was also revealed that both insulation and substrate heating are necessary for digester temperature stability. The limiting factor in substrate heating in biodigesters is the heating cost. This can be minimized by using heat recovered from CHP plants and solar radiation, in case of non-electricity generating plants. Water, because of its high specific heat capacity, was recommended as a better medium of heat transfer than air in case of indirect heating. To enhance efficiency in biogas production, even household digesters should be designed with some insulation and heating facility regardless of the intended use of the produced gas.

Suggested Citation

  • Makamure, Francis & Mukumba, Patrick & Makaka, Golden, 2021. "An analysis of bio-digester substrate heating methods: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
  • Handle: RePEc:eee:rensus:v:137:y:2021:i:c:s136403212030719x
    DOI: 10.1016/j.rser.2020.110432
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S136403212030719X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2020.110432?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mutungwazi, Asheal & Mukumba, Patrick & Makaka, Golden, 2018. "Biogas digester types installed in South Africa: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 172-180.
    2. Pei Guo & Jiri Zhou & Rongjiang Ma & Nanyang Yu & Yanping Yuan, 2019. "Biogas Production and Heat Transfer Performance of a Multiphase Flow Digester," Energies, MDPI, vol. 12(10), pages 1-18, May.
    3. Patrick Mukumba & Golden Makaka & Sampson Mamphweli & Peace-maker Masukume, 2019. "Design, construction and mathematical modelling of the performance of a biogas digester for a family in the Eastern Cape province, South Africa," African Journal of Science, Technology, Innovation and Development, Taylor & Francis Journals, vol. 11(3), pages 391-398, April.
    4. Katuwal, Hari & Bohara, Alok K., 2009. "Biogas: A promising renewable technology and its impact on rural households in Nepal," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2668-2674, December.
    5. Hilkiah Igoni, A. & Ayotamuno, M.J. & Eze, C.L. & Ogaji, S.O.T. & Probert, S.D., 2008. "Designs of anaerobic digesters for producing biogas from municipal solid-waste," Applied Energy, Elsevier, vol. 85(6), pages 430-438, June.
    6. Surendra, K.C. & Takara, Devin & Hashimoto, Andrew G. & Khanal, Samir Kumar, 2014. "Biogas as a sustainable energy source for developing countries: Opportunities and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 846-859.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. El Ibrahimi, Mohammed & Khay, Ismail & El Maakoul, Anas & Bakhouya, Mohamed, 2022. "Effects of the temperature range on the energy performance of mixed and unmixed digesters with submerged waste: An experimental and CFD simulation study," Renewable Energy, Elsevier, vol. 200(C), pages 1092-1104.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Patrick Mukumba & Shylet Y. Chivanga, 2023. "An Overview of Renewable Energy Technologies in the Eastern Cape Province in South Africa and the Rural Households’ Energy Poverty Coping Strategies," Challenges, MDPI, vol. 14(1), pages 1-12, March.
    2. Hynek Roubík & Jana Mazancová & Phung Le Dinh & Dung Dinh Van & Jan Banout, 2018. "Biogas Quality across Small-Scale Biogas Plants: A Case of Central Vietnam," Energies, MDPI, vol. 11(7), pages 1-12, July.
    3. Ricardo Situmeang & Jana Mazancová & Hynek Roubík, 2022. "Technological, Economic, Social and Environmental Barriers to Adoption of Small-Scale Biogas Plants: Case of Indonesia," Energies, MDPI, vol. 15(14), pages 1-16, July.
    4. Garfí, Marianna & Martí-Herrero, Jaime & Garwood, Anna & Ferrer, Ivet, 2016. "Household anaerobic digesters for biogas production in Latin America: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 599-614.
    5. Li, Changjiang & Liao, Yuncheng & Wen, Xiaoxia & Wang, Yangfeng & Yang, Fei, 2015. "The development and countermeasures of household biogas in northwest grain for green project areas of China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 835-846.
    6. Bhutto, Abdul Waheed & Bazmi, Aqeel Ahmed & Zahedi, Gholamreza, 2011. "Greener energy: Issues and challenges for Pakistan--Biomass energy prospective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 3207-3219, August.
    7. Francis Kemausuor & Muyiwa S. Adaramola & John Morken, 2018. "A Review of Commercial Biogas Systems and Lessons for Africa," Energies, MDPI, vol. 11(11), pages 1-21, November.
    8. Ferrer-Martí, Laia & Ferrer, Ivet & Sánchez, Elena & Garfí, Marianna, 2018. "A multi-criteria decision support tool for the assessment of household biogas digester programmes in rural areas. A case study in Peru," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 74-83.
    9. Wu, X.F. & Chen, G.Q. & Wu, X.D. & Yang, Q. & Alsaedi, A. & Hayat, T. & Ahmad, B., 2015. "Renewability and sustainability of biogas system: Cosmic exergy based assessment for a case in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1509-1524.
    10. Bharathiraja, B. & Sudharsana, T. & Jayamuthunagai, J. & Praveenkumar, R. & Chozhavendhan, S. & Iyyappan, J., 2018. "Biogas production – A review on composition, fuel properties, feed stock and principles of anaerobic digestion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 570-582.
    11. Wenzhi Xu & Yongqun Zhu & Xie Wang & Lei Ji & Hong Wang & Li Yao & Chaowen Lin, 2021. "The Effect of Biogas Slurry Application on Biomass Production and Forage Quality of Lolium Multiflorum," Sustainability, MDPI, vol. 13(7), pages 1-13, March.
    12. Khan, Ershad Ullah & Martin, Andrew R., 2016. "Review of biogas digester technology in rural Bangladesh," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 247-259.
    13. Luo, Tao & Khoshnevisan, Benyamin & Huang, Ruyi & Chen, Qiu & Mei, Zili & Pan, Junting & Liu, Hongbin, 2020. "Analysis of revolution in decentralized biogas facilities caused by transition in Chinese rural areas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    14. Shirzad, Mohammad & Kazemi Shariat Panahi, Hamed & Dashti, Behrouz B. & Rajaeifar, Mohammad Ali & Aghbashlo, Mortaza & Tabatabaei, Meisam, 2019. "A comprehensive review on electricity generation and GHG emission reduction potentials through anaerobic digestion of agricultural and livestock/slaughterhouse wastes in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 571-594.
    15. Cudjoe, Dan & Wang, Hong & zhu, Bangzhu, 2022. "Thermochemical treatment of daily COVID-19 single-use facemask waste: Power generation potential and environmental impact analysis," Energy, Elsevier, vol. 249(C).
    16. Roopnarain, Ashira & Rama, Haripriya & Ndaba, Busiswa & Bello-Akinosho, Maryam & Bamuza-Pemu, Emomotimi & Adeleke, Rasheed, 2021. "Unravelling the anaerobic digestion ‘black box’: Biotechnological approaches for process optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    17. Frempong, Raymond Boadi & Orkoh, Emmanuel & Kofinti, Raymond Elikplim, 2021. "Household's use of cooking gas and Children's learning outcomes in rural Ghana," Energy Economics, Elsevier, vol. 103(C).
    18. Zareei, Samira, 2018. "Project scheduling for constructing biogas plant using critical path method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 756-759.
    19. M'Arimi, M.M. & Mecha, C.A. & Kiprop, A.K. & Ramkat, R., 2020. "Recent trends in applications of advanced oxidation processes (AOPs) in bioenergy production: Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    20. Sharvini, Siva Raman & Noor, Zainura Zainon & Chong, Chun Shiong & Stringer, Lindsay C & Glew, David, 2020. "Energy generation from palm oil mill effluent: A life cycle assessment of two biogas technologies," Energy, Elsevier, vol. 191(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:137:y:2021:i:c:s136403212030719x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.